

Introduction to audio ML with TorchAudio

Moto Hira, Zhaoheng Ni

PyTorch, Meta.

Agenda

- 1. Introduction
- 2. Fundamentals
- 3. Audio I/O
- 4. Feature Extraction
- 5. Examples

1. Introduction

- **1. TorchAudio Project**
- 2. The PyTorch Audio Team

WHAT IS TORCHAUDIO? — A QUICK LIBRARY WALKTHROUGH

TorchAudio

Source Code: https://github.com/pytorch/audio

Documentation (dev): https://pytorch.org/audio/main

Documentation (stable): https://pytorch.org/audio/stable

() .iļi.

WHAT IS TORCHAUDIO? — A QUICK LIBRARY WALKTHROUGH

() .ilji.

OUR TEAM

- Moto Hira, Software Engineer
- Jeff Hwang, Software Engineer
- Zhaoheng Ni, Research Scientist
- Xiaohui Zhang, Research Scientist
- Yumeng Tao, Engineering Manager

2. Fundamentals

- 1. Waveform
- 2. Spectrogram

WHAT IS WAVEFORM?

An audio waveform represents pressure vibrations of sound recorded by microphone.

() .ilji.

WHAT IS WAVEFORM?

Waveforms are most likely discrete.

16 kHz means sampling one point every 1/16000 second.

Each point represents the energy of sound vibration at the moment.

WHAT IS WAVEFORM?

The sample frequency must be at least twice as the sound frequency, according to <u>Nyquist–Shannon sampling theorem</u>

WHAT IS SPECTROGRAM?

Time-domain signal can be expanded to a series of sines.

Each sine can be represented as

$$x(t) = A \cdot \cos(2\pi f t + arphi)$$

Where A is the energy, f is the frequency, φ is the initial phase

Reference: https://www.nti-audio.com/en/support/know-how/fast-fourier-transform-fft

() .ilji.

WHAT IS SPECTROGRAM?

A spectrogram is a visual representation of the <u>spectrum</u> of frequencies of a signal as it varies with time.

Waveforms can be transformed into spectrograms by <u>Short-time Fourier Transform</u> (<u>STFT</u>).

A spectrogram visualizing the results of a STFT of the words "nineteenth century"

Reference: https://en.wikipedia.org/wiki/Short-time_Fourier_transform

3. Audio I/O

AUDIO I/O

import torchaudio

Load audio data
waveform, sample_rate = torchaudio.load('original.flac')

AUDIO I/O

```
# Resample to 8000 Hz
```

```
new_sample_rate = 8000
waveform = torchaudio.functional.resample(
    waveform, sample_rate, new_sample_rate)
```


AUDIO I/O

Save the audio
torchaudio.save(
 'resampled.flac', waveform, new_sample_rate)

4. Feature Extraction

FEATURE EXTRACTION

Feature extraction and augmentation

import torchaudio.transforms as T

```
# Get spectrogram
trans = T.Spectrogram(...)
spectrogram = trans(waveform)
```

```
# Mask along time axis a.k.a SpecAugment
time_masking = T.TimeMasking(...)
time_masked = time_masking(spectrogram)
```


Masked along time axis

5. Examples

() .ilį́i.

Examples

• Streaming ASR

https://pytorch.org/audio/stable/tutorials/online_asr_tutorial.html

• Text-to-Speech

https://pytorch.org/audio/stable/tutorials/tacotron2_pipeline_tutorial.html

• Speech Enhancement

https://pytorch.org/audio/stable/tutorials/mvdr_tutorial.html

• Music Separation

https://pytorch.org/audio/stable/tutorials/hybrid_demucs_tutorial.html

THANK YOU