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Definition

A common definition:

speech speech

«M‘ W
Conversion
U « AUNNNNINI

Voice conversion (VC) is a task that

* transforms a speaker’s voice into that of another speaker
without altering

* the linguistic content .
Voice Changer

Change Your Voice to Funny Effects

* prosody and other paralinguistic information




Definition

‘ | will work from home. \ I will work from home ...

. Emotuonal
[ Voice Conversmn

Broader definition:

Speaker A Speaker A
(Happy) (Sad)
Besides the timbre conversio n, can be extended to, Picture from https:/hltsingapore.github.io/ESD/index.html

e Emotion conversion

e Dysarthria-to-normal



https://hltsingapore.github.io/ESD/index.html

Overall Definition

Voice conversion is a technique to to convert non-/para- linguistic

information while preserving linguistic information

How to factorize?

[ How to analyze? ]x 2 How to generate? ]

[ How to paramﬁ \L How to convert? ]

lomoki Toda: Recent progress on voice conversion: what is next




Example

Target speaker Timbre
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~
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Source speaker Linguistics

Converted Voice



Applications

* \oice over for movies

* Livestreaming using the target voice

* Speaker anonymization Dubbing / voice over virtual idol

Speaker A?{énymization

privacy protection



Applications

Adaptive TTS:

Leverage the existing TTS system and change the speaker information

-~ - -
| Conversion

Off-the-shelf




Thriving research interest

Tre N d Number of papers with "voice conversion" in the titles
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Picture from the interspeech2022 voice conversion tutorial given by Hung-yi Lee
https.//github.com/tts-tutorial/interspeech2022/blob/main/INTERSPEECH Tutorial VC.pdf



https://github.com/tts-tutorial/interspeech2022/blob/main/INTERSPEECH_Tutorial_VC.pdf

Basics



Data available: Parallel data

VCC 2016

Utterance pairs of source-target speech

-

Training set

Same linguistic contents
162 sentences in each speaker

Please say

)

~

the same thing. J

( Please say L

B4

Source speaker

7

N \
Let’s convert
my voice.

54 sentences in each
\ source speaker

Evaluation set

/

v
Training

Conversion

L the same thing. 5\ \%
&

Target speaker

Let’s convert
my voice.

e Naturalness

\- Speaker similarity

\

Evaluation by listening test

»




Data available: Unparallel data

VCC 2018

Arbitrary utterances of source/target speech

Different linguistic contents
81 sentences in each speaker

/ Training set

]

o

Source speaker

/

-

Let’s convert
my voice.

Evaluation set

35 sentences in each
source speaker

o

J Please say Let’s say
/Q the same thing. J a different thing. \%

Training

e !} &r

=2

Conversion

gy,
Target speaker

] )

Let’s convert
my voice.

More evaluation
* Listening test

\° ASR & ASV results J




Capabilities: Input vs. Output

Source speaker Target speaker

One-to-one VC o Speaker Speaker
Y

Voice | ull
Conversion ' ~ | ' w |
Goodb Goodbye

Many-to-many VC

Seen Seen
) Speaker Speaker

' ' ”m “‘ Voice
Conversion
Goodbye

Seen Speakers /

@
= in training data Speaker identity (Seen Speakers) : One-hot

Goodbye

Picture from the interspeech2022 voice conversion tutorial given by Hung-yi Lee
https://github.com/tts-tutorial/interspeech2022/blob/main/INTERSPEECH Tutorial VC.pdf



https://github.com/tts-tutorial/interspeech2022/blob/main/INTERSPEECH_Tutorial_VC.pdf

Capabilities: Input vs. Output

Any Seen
Spea kers Speakers

Voice M”M “‘ M ”‘“ ~‘
Conversion |
Goodbye Goodbye

~

Speaker identity (Seen Speakers)

Any-to-many VC %

Any-to-any VC Any

) Speakers

D
Voice
—} .
Conversion
i Goodb@e H
/ Any
Also known as one-shot VC «W i Eocakers
(or zero-shot VC?) I‘o

‘Goodbye

Hel

Picture from the interspeech2022 voice conversion tutorial given by Hung-yi Lee
https://github.com/tts-tutorial/interspeech2022/blob/main/INTERSPEECH Tutorial VC.pdf



https://github.com/tts-tutorial/interspeech2022/blob/main/INTERSPEECH_Tutorial_VC.pdf

Evaluation metrics

Objective metrics Subjective metrics
Mel-cepstral distortion (MCD) Mean Opinion Score (MOS)
, o \ - MOS Score = Description
2
Dauen = 37 Dy 37 2, (08c(etnm) = 108c(canm)) 1 Bad
2 Poor
3 Fair
4 Good
5 Excellent

Root Mean Square Error (RMSE)

1 K
RMSE = \] — Z (FOZ — FO,’;)‘2 ABX Test: Which one do you prefer
Ko



Pretrained model based methods



Voice conversion pipeline

* ASR based VC systems

Speech recognition

f phoneme posteriorgram (PPG)
Doyou ... -
* Frame-to-frame conversion Content] & .
Encoder — L_‘ 9
* Modeling § Dovor
C

MM — — | — Decoder — MM

* PPG/Bottleneck feature extraction

* Speaker embedding extraction Toem e

‘e
Encoder
O..A

* Decoder
i-vector, d-vector, x-vector ...
« VCAM Speaker embedding

* Vocoder



Content Embedding

Extract content embeddings from
pretrained ASR models

Recall:

ASR aims to transcribe the input audio, and is

expected to be robust against
* Speaker identities
* Environment

e Channels

* Perfect for content representation learning
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Speaker Embedding

Segment level embedding learning

. X
n

Output layer

P(spk,)
P(spk2)
P(spks)
P(spky)
P(spks)

Frame-level deep feature learning
l

Extract content embeddings from pretrained
speaker classification models

Can be pretrained on a large-scale speaker
classification dataset

8uijood

00
00

U i5=0¢

Segment-level representation

OO
e 00000

Frame layers + pooling + segment layers + loss
function

P(spky)

——

Speaker embedding

identity




Acoustic Model (Optional)

MFCC
Hﬂﬂﬂﬂﬂﬂ HHHDHU[% | * In Text-to-speech, acoustic model
| performs the text-to-mel
N | alignment and conversion
ASR model . _ .
(fixed) = * For voice conversion:
y | | Lookup Table | |
| | | * No need for alignment (frame-to-
| _ | frame)
IIII!!Iea!u!iIIIII 1 . |l * AM aims to enhance the modeling
Ty Speaker ~ | i capabilities.
{ BN-Prenet ’ Statistics ; _ 3

Layer

| |
| Statisti | * Mapping PPG to Mel
T resncomen: |—soniey i i)
I ' $ } j } |
| |

Conversion model

Yufei Liu, et al. Non-Parallel Any-to-Many Voice Conversion by Replacing Speaker Statistics



Vocoder

A neural vocoder takes an

deep learning networks

Current dominating approach: e

* GAN based vocoder
* Fast adaptation

* High-quality

* Fastinference: Non-autoregressive

Mel Spectogram

Can be pretrained on a large dataset (only |
audio data is needed)

Conv Layer

PR E—

Input sequence

Upsampling [8x]
2X , 2 y
it Dilated
Residual stack conv block
Upsampling [2x]
Layer
2X Output sequence

Conv Layer

}

Raw Waveform

(a) Generator

—
Discriminator

Raw Waveform

l

Avg Pool

|

Avg Pool

Block

Block
Block

Raw Waveform

{
T Conv Layer
(downsampled) :

}

Layer

l

Conv Layer

l

Conv Layer

\
AN

Discriminator

Discriminator

Downsampling [4x]

such as mel spectrogram as input and outputs a waveform using

Feature maps
+ output

Feature maps
+ output

Feature maps
+ output

\

—— Feature map

—— 4x Feature maps

—— Feature map

—— Output

(b) Discriminator

Kumar, Kundan, et al. "Melgan: Generative adversarial networks for conditional waveform synthesis."



End-to-end methods (self-disentangle)



End-to-end systems

Learn the disentanglement

AutoVC: Carefully design the bottleneck

it [2agl] |2 [1Bagl

- X1
X1 S1|] X151 X X:? X,? X; z

AN S SN

(a) Bottleneck too wide (b) Bottleneck too narrow (c) Bottleneck just right (d) Conversion

Too wide dimension:  content encoder also encode speaker information
Decrease dimension:  squeeze out speaker information
Too narrow dimension: content encoder cannot encode all content information

Qian, Kaizhi, et al. “Autovc: Zero-shot voice style transfer with only autoencoder loss.” ICML 2019



End-to-end systems

Learn the disentanglement

Adversarial training

_ Speaker CAN
" Classifier o
Learn to fool the | ‘
speaker classifier Doyou.... Discriminator
9
Content 'Y
— —
Encoder ¢
¢ Doyou
Generator s
o

MM — _, — Decoder — MM

Speaker
—
Encoder .,

A .
i-vector, d-vector, x-vector ...
Speaker embedding

Qian, Kaizhi, et al. “Autovc: Zero-shot voice style transfer with only autoencoder loss.” ICML 2019
Chin-Cheng Hsu, et al. “Voice Conversion from Non-parallel Corpora Using Variational Auto-encoder.” APSIPA, 2016



Beyond common voice conversion



Singing voice conversion

* Prosody needs explicit modelling

* Vocoder needs improvement for
singing voice modeling

Singing Voice
Conversion
* Usually accepts pitch as extra e,
; Mapping

information ‘
Source Singer Model

* The problem of cross-gender
conversion (large pitch shift)



Cross-lingual voice conversion

 Problem: Accent

* Solution: Multi-lingual
content modeling
* Multi-lingual ASR

I can speak
English
...... - =

Source Speaker Target Speaker




Cross-lingual voice conversion

Cross-lingual Voice Conversion

English ASR
Speech Converted Speech
Bilingual PPGS Voice
T > Vocoder
Converter
Chinese ASR

Speech Converted Speech

Vocoder

Bilingual PPGS Voice
mmmmmndl  Bilingual ASR g ol

(_A_\

Look ing
ed
REIF

Data Target




Cross-lingual voice conversion

Whisper from OpenAl

e A

Sequence-to-sequence learning

Multitask training data (680k hours) ’ EN ’Tg;gg 00 |The S ...
. . e next-token
English transcription prediction
N
g “Ask not what your country can do for ---" ~
D Ask not what your country can do for - MLP > ctoss aftention
=
Any-to-English speech translation s .
c :
‘ “El rapido zorro marrén salta sobre ---” Transformer %
Encoder Blocks » Transformer
D The quick brown fox jumps over --- 8 —— Decoder Blocks
S >

self attention

Non-English transcription

e

woiE o E=3 [=] L Ho n E A
A 2o 22t We{cte® UL H0 §e - . "
Sinusoidal A > == on
B oo <00 g2t uzictea ypy 9o ge - Positional (C)—»ea sl atenion
Encoding A J
Learned
No speech 2 x Conv1D + GELU e % Positional
y )
m (background music playing) Encoding
D ¢ ’sm EN [Tase| 0.0 | The |quick| ...
Log-Mel Spectrogram Tokens in Multitask Training Format




Real-time Streaming Voice Conversion

* Live broadcasting
* Real-time communication (RTC)

* Challenges:

* Extreme low latency

* Streaming mode leads to inaccurate
modeling (short context, no future
information)

o/

.
i

<

;




Risk of Voice Conversion

* The possibility of the misusage for
spoofing
* VC makes it possible for someone to
speaker in your voice

* What can we do?
* Anti-spoofing!
* Attracting growing interest along

with the development of speech
generation techniques

A Voice Deepfake Was
Used To Scam A CEO Out
Of $243,000

Jesse Damiani Contributor C
esien m
Startups. & Media

@ Listen to article 3 minutes

THE WALL STREET JOURNAL

PRO CYBER NEWS

Fraudsters Used Al to Mimic CEO’s
Voice in Unusual Cybercrime Case

Scams using artificial intelligence are a new challenge for companies




Appendix



VCC: Voice Conversion Challenge

http://www.vc-challenge.org/

2016 + 1stVCC (VCC2016)

e Parallel training
2017 + SINGING

VOICE
Ve

2018 + 2" VCC (VCC2018)

e Parallel training Singing Voice Conversion Challenge 2023
2019 T _

e Non-parallel training VCC2023: SVC
2020 + 3 VCC (VCC2020)

e Semi-parallel training

! e Non-parallel training across different languages

(cross-lingual VC)


http://www.vc-challenge.org/

ASVspoof: Detecting the synthesized speech

https://www.asvspoof.org/

ASVspoof5
We Need You!
Call For Spoofed/Speech DeepFake Data Contributors
m*”» if you are interested in becoming a contributor, send an email to info@asvspoof.org
ASVS POOf
Automatic Speaker Verification and Focus on VC and TTS

Spoofing Countermeasures Challenge .
RSt = DeepFake detection

x formal definition v Task definition

x benchmark v’ Metrics v/ More unseen v Channel mismatch
x database v Database attacks (codec & trans.)
| | | |
2015 2017 2019 2021

ASVspoof 2015 ASVspoof 2019 ASVspoof 2021


https://www.asvspoof.org/

Practice: Build a VC system

* PPG :
* Wenet: https://github.com/wenet-e2e/wenet
* Whisper: https://github.com/openai/whisper

* Speaker embedding
* Wespeaker: https://github.com/wenet-e2e/wespeaker

* Vocoder
* Hifi-gan: https://github.com/jik876/hifi-gan



https://github.com/wenet-e2e/wenet
https://github.com/openai/whisper
https://github.com/wenet-e2e/wespeaker
https://github.com/jik876/hifi-gan

Q&A



