Lecture 9: Language models

Zhizheng Wu

Outline

> What is a language model?
> Applications of language models
> N-gram and chain rule
- Examples for bigram probabilities
* Evaluating language models
* Smoothing

Give a word

The student is watching

Probabilistic language model

> Goal: Compute the probability of a sentence or sequence of words
P(W) = Pwi,wy,,ws,...,w,)
> Probability of an upcoming word

Pw, | Wi, Wy, Ws, ..., W, _1)

LM applications

> Machine translation
P(Students from my class are the best | FPF_F 574 52 1))

> P(Students from Stanford are the best | FIF_ 1244 B 1)

> Natural language generation
P(best | Students from my class are the) > P(average | Students from my class are the)

> Speech recognition
P(Three students) > P(Tree students)

Language models in daily life

Google

O, the chinese university X S

& The Chinese University of Hong Kong (CUHK)

% Public university in Hong Kong

® The Chinese University of Hong Kong

=z |niversity in Shenzhen, China

©, the chinese university of hong kong ranking

©. the chinese university of hang kang acceptance rate
©. the chinese university of hong kong press

©. the chinese university of hong kong shenzhen ranking

the chinese university of hong kong department of mathematics

Q. Department of Mathematics, The Chinese University of Hong Kong - Room 220, The
Chinese University of Hong Kong (CUHK), Lady Shaw Building, University Ave, Ma Liu
Shui, Hong Kong

C. the chinese university of hong kong zip code

=== The Chinese University Press

Language models in daily life

Recipients

this is a test email for CSC3160/MDS6002 course

This is a test email on language model applications. | has a typo. can you corret it?

Probability of next word

Students f 1 h
P(best | Students from my class are the) = C(Students from my class are the best)

C(Students from my class are the)

> C(Students from my class are the best) is count of the phrase “Students from my
class are the best’

Probability of next word

> Smarter way to estimate the probability

P(Students from my class are the best)
= P(best|the)P(the|are)P(are|class)P(class | my)P(my | from)P(from | Students)P(Students)

> Chain rule of probability

Pw,.,) = Pw)Pw, | w)Pwy|w;.,)...Pw, |w.,.)

N-gram

The student is watching

Unigram: “The”

Bigram: “The student”

Trigram: “The studentis”

4-gram: “The student is watching”

Bigram model

> approximates the probability of a word given all the previous words by using only
the conditional probability of the preceding word

P(best | Students from my class are the) ~ P(best | the)

Markov assumption

> Assumption: the probability of a word depends only on

the previous word

n of the Squares of Standarg s azrzmel omsrams,

the Deviations]

+oioss | /~ !
/A

POMAITE B CTHXAXD.

| 1.702,3

P(best | Students from my class are the) ~ P(best | the)

P(Wn ‘ Wl:n—l) ~ P(Wn ‘ Wn—l)

> Markov model: assume we can predict the probability
of some future unit without looking too far into the past

Generalizing bigram to n-gram

> From bigram to n-gram

P(Wn ‘ Wl:n—l) ~ P(Wn ‘ Wi—NA I:n—l)

> N =2: bigram
> N = 3: trigram
" N =4: 4-gram
> N =5:5-gram

Simplest case: unigram

P(w,.,) = P(w)P(wy,)P(wz)...P(w,)

e regenerate by simulating an unigram model

Certainly, | can simulate an unigram model to generate a new sentence. Here is an

example:

"Dog cat ball blue happy tree sing boy laugh jump sun"

Bigram model

> Condition on the previous word
P(w;[wy,;_1) = P(w;|w;_;)

g,%l\g regenerate by simulating a bigram model

Sure, here's an example sentence generated using a bigram model:

"The sun is shining brightly, and the birds are singing in the trees."

Example with a mini-corpus

<s> I am Sam </s>
<s> Sam I am </s>
<s> I do not like green eggs and ham </s>

<S> : beginning symbol
</s>: ending symbol

> Maximume-likelihood estimation (MLE): bigram probability

B
NI NS

N

P(I|<s>)= 3 =.67 P(Sam|<s>) = % =.33 P(am|I) =5 =.67
P(</s>|Sam) =7 =0.5 P(Sam|am)= ;=5 P(do|I) = 33

I

C(Wn—N—H:n—] Wn)
C(Wn—N-i-l:n—l)

P(Wnlwn—N+1:n—l) —

A slightly large example

" Bigram counts

i want to eat chinese food Iunch spend
i S 827 0 9 0 0 0 2
want 2 0 608 1 6 6 5 1
to 2 0 4 686 2 0 6 211
eat 0 0 2 0 16 2 4 0
chinese 1 0 0 0 0 82 1 0
food 15 O 15 0 1 4 0 0
lunch 2 0 0 0 0 1 0 0
spend 1 0 1 0 0 0 0 0
> .
Unigram counts i want to eat chinese food lunch spend
2533 927 2417 746 158 1093 341 278

= “| want” occurred 827 times in the document.
- "want want” occurred O times.

Bigram probabllltles

want to eat chinese food lunch spend
i 0.002 033 0 0.0036 0O 0 0 0.00079
want 0.0022 O 0.66 0.0011 0.0065 0.0065 0.0054 0.0011
to 0.00083 0O 0.0017 0.28 0.00083 0 0.0025 0.087
eat 0 0 0.0027 0 0.021 0.0027 0.056 0O
chinese 0.0063 0 0 0 0 0.52 0.0063 0
food 0.014 0 0.014 0O 0.00092 0.0037 0 0
lunch 0.0059 0 0 0 0 0.0029 0 0
spend 0.0036 O 0.0036 0O 0 0 0 0
" Other useful probabilities P(i|<s>) =0.25 P(english|want) = 0.0011

P(food|english) =0.5 P(</s>|food)=0.68

" Calculate probability of sentences like “I want English food”
P(<s> i want english food </s>)

= P(i|<s>)P(want|i)P(english|want)
P(food|english)P(</s>| food)

25 % .33 x.0011 x 0.5 x0.68

.000031

Evaluating language models

Tralning set

Perplexity

" the inverse probability of the test set, normalized by the number of words

perplexity(W) = P(wiw;... WN)_%

1
Pwiwy...wy)

N

"> Applying chain rule

1
(Wilwy...wi_1)

perplexity(W) = il—{ -
i

Intuition of perplexity

" Intuitively, perplexity can be understood as a measure of uncertainty

> What’s the level of uncertainty to predict the next word?
= The current president of CUHK Shenzhen is ?
= ChatGPT is built on top of OpenAl's GPT-3 family of large language

> Uncertainty level
= Unigram: highest
= Bigram: high
= 5-gram: low

Lower perplexity = better model

Unigram Bigram Trigram
Perplexity 962 170 109

https:/web.stanford.edu/~jurafsky/slp3/3.pdf
https:/www.isca-speech.org/archive_vo/Interspeech_2017/pdfs/0729.PDF

Model PPL
Trigram-1 303.2
Trigram-all 112.2
Sgram-1 281.0
S-gram-all 73.7
ME-1 286.5
ME-all 68.8
FFNN-all 83.0
RNN-1 211.1
RNN-all 45.7
RNNME-1 196.3
RNNME-3 136.0
RNNME-6 109.7
RNNME-9 107.5
RNNME-12 103.1
RNNME-15 91.3
RNNME-18 106.9
RNNME-21 78.9
L-1-512-512-0.1 63.2
L-1-1024-512-0.1 54.5
L-1-2048-512-0.1 45.3
[L-1-8192-2048-0.5 35.9
L-1-8192-2048-0 37.5
L-2-2048-512-0.1 39.8
L-2-4096-1024-0.1 33.6
Human (estimated) 12.0

Long talil

B Fole. *

. d - 7'y
J. ‘E

PN 10 *QYTOYKA kl 130' cor:FE}
1A M‘RNA e BAR

-
. 4

. KAAAO €

. | ‘ . | _ o & ; i b a0 g YN _';'-:.:n-.- oh .
| ; & I >
e Q&B@ NA

The perils of overfitting

> N-gram models only work well for word prediction if the test corpus looks like the
training corpus

= In real world, the inference corpus often doesn’t look like the training
= Robust models that generalize are all we need

= One kind of generalization: Zeros

* Things that doesn’t ever occur in the training set but not in the test set

Zeros

" Training set " Test set
= ... denied the allegations = ... denied the offer
= ... denied the reports = ... denied the loan

= ... denied the claims
= ... denied the request

P(offer|denied the) = 0

P(loan |denied the) =0

Zero probability bigrams

" Bigram with zero probability
- On test set P(Wi ‘ Wl:i—l) ~ P(Wi ‘ Wi—l)

" Perplexity: can’t compute because of 1 over O...

1
H P(wilwy...wi_1)

perplexity(W) = i
i=1

Unseen events

Training data: The wolf is an endangered species
Test data: The wallaby is endangered

Unigram Bigram Trigram
P(the) P(the | <s>) P(the | <s>)
x P(wallaby) x P(wallaby | the) x P(wallaby | the, <s>)
x P(15) x P(1s | wallaby) x P(1s | wallaby, the)

X P(endangered)| X P(endangered | 1s) X P(endangered | is, wallaby)

-Case 1: P(wallaby), P(wallaby | the), P(wallaby | the, <s>):
What is the probability of an unknown word (in any context)?

-Case 2: P(endangered | 1s)
What is the probability of a known word in a known context,
if that word hasn’t been seen in that context?

-Case 3: P(is | wallaby) P(is | wallaby, the) P(endangered | is, wallaby):
What is the probability of a known word in an unseen context?

https:/courses.engr.illinois.edu/cs447/fa2018/Slides/Lectureo4.pdf

What can we do?

Dealing with unknown words: Simple solution

> Create an unknown word token <UNK>
= Training of <UNK> probabilities
- Create a fixed lexicon L of size V
= At text normalization phase, any training word not in L changed to <UNK>

" During inference
= Use UNK probabilities for any word not in training

Smoothing

" To improve the accuracy of our model

"> To handle data sparsity, out of vocabulary words, words that are absent in the training
set.

> Smoothing techniques

= Laplace smoothing: Also known as add-1 smoothing
= Additive smoothing

= Good-turing smoothing

= Kneser-Ney smoothing

= Katz smoothing

= Church and Gale Smoothing

Laplace Smoothing

> Assuming every (seen or unseen) event occurred once more than it did in the training
data.

>

P - Cw,_,w,) + 1
Laplace™n!Vn-1) = C(w,_)+V

Bigram counts

i want to eat chinese food lunch spend
i S 827 0 9 0 0 0 2
want 2 0 608 1 6 6 5 1
to 2 0 4 686 2 0 6 211
Original eat 0 O 2 0 16 2 42 0
chinese 1 0 0 0 0 82 1 0
food 15 0 15 0 1 4 0 0
lunch 2 0 0 0 0 1 0 0
spend 1 0 1 0 0 0 0 0
i want to eat chinese food lunch spend
i 6 828 1 10 1 1 1 3
want 3 1 609 2 7 7 6 2
to 3 1 S 687 3 1 7 212
Smoothed eat 11 31 17 3 43 I
chinese 2 1 1 1 1 83 2 1
food 16 1 16 1 2 5 | 1
lunch 3 | 1 1 1 2 1
spend 2 1 2 1 1 1 1

Intuition of smoothing

> When we have sparse statistics:
= P(w | denied the)
* 3 allegations
* 2 reports
* 1 claims
* 1 request
> Steal probability mass to generalize better
= P(w | denied the)
* 2.5 allegations
* 1.5 reports
* 0.5 claims
* 0.5 request
* 2 other

(b
-
§ S O
£ O 35
© & O
V)
s | :
e
o || & - o
O
S/ € |mumm § < 8
e = @ :l: -
= v =1 ©c £ O
()
A

Backoff an interpolation

> Use less context

- Backoff

® use trigram if you have good evidence,
* otherwise bigram, otherwise unigram

= Interpolation

* Mix unigram, bigram, trigram

Summary

>

Language model

= Compute the probability of a sentence or sequence of words
= Predicting next word

N-gram

= Unigram

= Bigram

= Trigram

= Etc

Evaluating language model: perplexity

Smoothing

Reading

> Chapter 3: N-gram Language Models
= https://web.stanford.edu/~jurafsky/slp3/3.pdf

https://web.stanford.edu/~jurafsky/slp3/3.pdf

Next lecture

"> Neural language model

" Large language model

