Lecture 8 Syntax - Structure of sentences

Zhizheng Wu

Agenda

- Recap
- Concept of syntax and constituency
- Context-free grammar
- Cocke-Kasami-Younger (CKY) algorithm

Natural Language Processing Pyramid

Part-of-speech tagging is a disambiguation process

Verb or Noun? Verb or Noun?

One morning I shot an elephant in my pajamas

https://www.youtube.com/watch?v=NfN_gcjGoJo

One morning I shot an elephant in my pajamas How he got into my pajamas I don't know

Syntax is not Morphology

- Morphology deals with the internal structure of words
- Syntax deals with combinations of words
- Morphology is usually irregular
- Syntax has its irregularities, but it is usually regular
 - Syntax is mostly made up of general rules that apply across-the-board

cture of words

Constituency

- One way of viewing the structure of a sentence is as a collection of nested constituents
- Constituent: a group of neighboring words relate more closely to one another than to other words in the sentence
- Constituents larger than a word are called phrases
 - Noun phrases
 - Prepositional phrases
 - Verb phrases
- Phrases can contain other phrases

Noun phrase (NP)

- function as a noun
 - The elephant arrived
 - It arrived.
 - Elephants arrived.
 - The big pretty elephant arrived.
 - The elephant she loves arrived.

a phrase that has a noun or pronoun as its head or performs the same grammatical

Prepositional phrase (PP)

- I arrived on <u>Tuesday</u>.
- I arrived in March.
- I arrived under the leaking roof.

Every prepositional phrase contains a noun phrase

Verb phrase

- A verb phrase in English consists of a verb followed by assorted other things
 - VP \rightarrow Verb NP
 - I prefer <u>an afternoon lecture</u>
 - VP \rightarrow Verb NP PP
 - have a lecture in the afternoon
 - VP \rightarrow Verb PP
 - Teaching on Tuesday

Is a string constitu

- Substitution test
 - Can the string be replaced by a si word?
- Movement test
 - Can the string be moved around i sentence?
- Answer test
 - Can the string be the answer to a question?

ent?	He ta
single	He ta
in the	[ln c
	Whe

alks [in class]

alks there

lass], he talks

Where does he talks? [In class]

Chomsky hierarchy

- Type-0 grammars include all formal grammars
- Type-1 grammars generate context-sensitive languages
- Type-2 grammars generate the context-free languages
- Type-3 grammars generate the regular languages, which can be described using regular expressions

Context-free grammar

- N a set of non-terminal symbols (or variables) a set of **terminal symbols** (disjoint from N) a set of **rules** or productions, each of the form $A \rightarrow \beta$, R
- - where A is a non-terminal,
 - β is a string of symbols from the infinite set of strings $(\Sigma \cup N)^*$ a designated start symbol and a member of N

Rules or productions

- Context-free
 - production rules are independent of the context
 - There is no context in the left hand side (LHS) of rules

Grammar Rules			
S	\rightarrow	NP VP	
NP	\rightarrow	Pronoun	
		Proper-Noun	
		Det Nominal	
Nominal	\rightarrow	Nominal Noun	
		Noun	
VP	\rightarrow	Verb	
		Verb NP	
	Í	Verb NP PP	
	İ	Verb PP	
DD			

 $PP \rightarrow Preposition NP$

Terminal vs Non-terminal

- Terminal: The symbols that that correspond to words in the language
- Non-terminal: The symbols that express abstractions over these terminals

Lexicon: Terminal vs Non-terminal

Pronoun \rightarrow *me* | *I* | *you* | *it* Preposition \rightarrow from | to | on | near | in Conjunction \rightarrow and | or | but

Noun \rightarrow flights | flight | breeze | trip | morning *Verb* \rightarrow *is* | *prefer* | *like* | *need* | *want* | *fly* | *do* Adjective \rightarrow cheapest | non-stop | first | latest | other | direct *Proper-Noun* \rightarrow *Alaska* | *Baltimore* | *Los Angeles* | Chicago | United | American Determiner \rightarrow the |a| an | this | these | that

S: Start symbol

- The formal language defined by a CFG is the set of strings that are derivable from the designated start symbol
- Each grammar must have one designated start symbol
- S is usually interpreted as the "sentence" node

 $S \rightarrow NP VP$

I prefer an afternoon lecture

A (Constituency) Parse Tree

Ambiguity

sentence

Structural ambiguity occurs when the grammar can assign more than one parse to a

Cocke-Kasami-Younger (CKY) algorithm

- Bottom-up parsing
 - Start with words
- Dynamic programming
 - save the results in a table/chart
 - re-use these results in finding larger constituents
- Presumes a CFG in Chomsky Normal Form

Chomsky Normal Form

minal symbols	NP, VP, S
rminal symbols	the, dog, a
rules, each 3 (from Σ) or two (from <i>N</i>)	$S \rightarrow NP VP$ Noun $\rightarrow dog$
nbol	

Chomsky Normal Form (CNF)

- Any CFG can be converted into weakly equivalent CNF
- In CNF, each non-terminal generates two non-terminals

$A \rightarrow B C \gamma$

 $S \rightarrow Aux NP VP$

$$A \rightarrow X1 \gamma$$

 $X1 \rightarrow BC$

 $S \rightarrow XI VP$ $XI \rightarrow Aux NP$

Chomsky Normal Form (CNF)

- Left hand side (LHS) rules
 - LHS will have non-terminals
- Right hand side (RHS) rules
 - Two non-terminals
 - One terminal

- $VP \rightarrow Verb NP$
- $VP \rightarrow teaching NP \times$

 $VP \rightarrow eat$

$\mathcal{L}_1 \operatorname{\mathbf{Grammar}}_{S \to NP VP}$

$$S \rightarrow Aux NP VP$$

 $S \rightarrow VP$

 $NP \rightarrow Pronoun$ $NP \rightarrow Proper-Noun$ $NP \rightarrow Det Nominal$ $Nominal \rightarrow Noun$ $Nominal \rightarrow Nominal Noun$ $Nominal \rightarrow Nominal PP$ $VP \rightarrow Verb$ $VP \rightarrow Verb NP$ $VP \rightarrow Verb NP$

 $VP \rightarrow Verb PP$ $VP \rightarrow VP PP$ $PP \rightarrow Preposition NP$

\mathscr{L}_1 in CNF

 $S \rightarrow NP VP$ $S \rightarrow XI VP$ $X1 \rightarrow Aux NP$ $S \rightarrow book \mid include \mid prefer$ $S \rightarrow Verb NP$ $S \rightarrow X2 PP$ $S \rightarrow Verb PP$ $S \rightarrow VP PP$ $NP \rightarrow I \mid she \mid me$ $NP \rightarrow TWA \mid Houston$ $NP \rightarrow Det Nominal$ Nominal \rightarrow book | flight | meal | money Nominal \rightarrow Nominal Noun Nominal \rightarrow Nominal PP $VP \rightarrow book \mid include \mid prefer$ $VP \rightarrow Verb NP$ $VP \rightarrow X2 PP$ $X2 \rightarrow Verb NP$ $VP \rightarrow Verb PP$ $VP \rightarrow VP PP$ $PP \rightarrow Preposition NP$

CKY algorithm

- Fills the upper-triangular matrix a column at a time
 - From left to right
 - From bottom to top
- This scheme guarantees that at each point in time we have all the information we need

CKY algorithm: a toy example

Rules

- $S \rightarrow NP VP$
- $VP \rightarrow V NP$
- $V \rightarrow eat$
- $NP \rightarrow we$
- NP → sushi

sushi eat S θ VD NP

CKY algorithm

function CKY-PARSE(*words, grammar*) **returns** *table*

for $j \leftarrow$ from 1 to LENGTH(words) do for all $\{A \mid A \rightarrow words[j] \in grammar\}$ $table[j-1, j] \leftarrow table[j-1, j] \cup A$ for $i \leftarrow \text{from } j - 2 \text{ down to } 0 \text{ do}$ for $k \leftarrow i + 1$ to j - 1 do $table[i,j] \leftarrow table[i,j] \cup A$

for all $\{A \mid A \rightarrow BC \in grammar \text{ and } B \in table[i,k] \text{ and } C \in table[k,j]\}$

CKY Example

Book	the	flight	flight through Houst	
S, VP, Verb, Nominal, Noun		S,VP,X2		S,VP,X2
[0,1]	[0,2]	[0,3]	[0,4]	[0,5]
	Det	NP		NP
	[1,2]	[1,3]	[1,4]	[1,5]
		Nominal, Noun		Nominal
		[2,3]	[2,4]	[2,5]
			Prep	PP
			[3,4]	[3,5]
				NP, Proper- Noun
				[4,5]

https://web.stanford.edu/~jurafsky/slp3/17.pdf

 \mathscr{L}_1 in CNF $S \rightarrow NP VP$ $S \rightarrow XI VP$ $X1 \rightarrow Aux NP$ $S \rightarrow book \mid include \mid prefer$ $S \rightarrow Verb NP$ $S \rightarrow X2 PP$ $S \rightarrow Verb PP$ $S \rightarrow VP PP$ $NP \rightarrow I \mid she \mid me$ $NP \rightarrow TWA \mid Houston$ $NP \rightarrow Det Nominal$ Nominal \rightarrow book | flight | meal | money Nominal \rightarrow Nominal Noun Nominal \rightarrow Nominal PP $VP \rightarrow book \mid include \mid prefer$ $VP \rightarrow Verb NP$ $VP \rightarrow X2 PP$ $X2 \rightarrow Verb NP$ $VP \rightarrow Verb PP$ $VP \rightarrow VP PP$ $PP \rightarrow Preposition NP$

Exercise

S	→	NP VP
VP	→	VBD NP
VP	→	VP PP
Nominal	→	Nominal PP
Nominal	→	pajamas elephant I
PP	→	IN NP
NP	→	DT NN
NP	→	pajamas elephant I
NP	→	PRP\$ Nominal

I shot an elephant in my pajamas

VBD	→	shot
DT	\rightarrow	an my
PRP	\rightarrow	Ι
PRP\$	→	my
IN	→	in

Exercise

Ι	shot	an	elephant	in	my	pajamas
NP, PRP [0,1]						
	VBD [1,2]					
		DT [2,3]				
			NP, NN [3,4]			
				IN [4,5]		
					PRP\$ [5,6]	
						NNS [6,7]

Summary

- Concept of syntax and constituency
 - Syntax deals with combinations of words
- Context-free grammar
 - production rules are independent of the context
- Cocke-Kasami-Younger (CKY) algorithm
 - Bottom-up parsing start with words
 - Dynamic programming
 - Presumes a CFG in Chomsky Normal Form

Reading

- Chapter 17: Context-Free Grammars and Constituency Parsing
- https://web.stanford.edu/~jurafsky/slp3/17.pdf

nd Constituency Parsing /17.pdf