Lecture 6: Text processing and
regular expression

Zhizheng Wu



Agenda

> Recap
> Text normalization
> Edit distance

> Regular expression



Content
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From spoken language to written language



S
=
=
s
=
=
R4
»3
»
IS
»
=
b
3
B3

@sama - Follow

TGS
Mo I

o
T
A R
|3 e
e i
B i
K
e
g} ;
Ay
li ./%4
B 2
3 %

ﬁ

‘-‘w
.‘—\‘ -
" ey

&E

D>
S~
~

S bl
S B OE S L 22 e

7

MEBR (S
®=WR S

S
/
n‘\l \‘\ i :

\"‘

much further”.

I L AL

S e 6

e

N

—!

o

| - S
o = e

forwards.

¥ Elon Musk &
= @elonmusk - Follow

™
)

\

b= Y |
v

2 2
a4

A
B et ok AR

strong Al.
3:48 AM - Dec 4, 2022

IR RN

2

x Y ’ , AR
SR A RS ARKITE TS, AB R A ELBOE A W i 1] 3
2 #2HiE S ¥ X rcompetencefliperformancef) % (&, PLSFIA, 7
B S R AR — R, B fperformance & fiit
competence. frll, HIEMI“BEFERES”, KBt A RER—Fp 5.
chatgptmiﬁz i 0, WiZELERE L A“BA"EHRIB TIES . MUIERRE :qsot:e'ehnog;;l?:ig::qr::tches the frameshift and the win_size matches the window size? And if the
A Hﬁ@i?ﬂqﬁtﬁﬁ B 7, RAMYLSERRAGESEN. For ;askz...

Read more

0 ® (’ (J 1 comment

[Assignment1 Q1 2]Some questions about concepts and parameters

For task1, I'm not sure about the meaning of frameshift and window size.

W= ERWIL is not for language only, it is end to end “common
sense “ test, human intelligence via language.
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Interesting to me how many of the ChatGPT takes are either “this is
AGI" (obviously not close, lol) or "this approach can't really go that
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Corpora

> Words don’t appear out of nowhere
> Any particular piece of text is produced
= by one or more specific speakers or writers
= In a specific dialect of a specific language
- at a specific time
= In a specific place
= for a specific function



Corpora along multiple dimensions

> Language: English, Chinese, etc

> Genre: Fiction, Scientific articles, Twitter, etc

> Author Demographics: writer's age, gender, etc
> Code switching: e.g. English/Chinese

> Variety: organization vs organisation



Corpus: tokens vs vocabulary

" Type: an element of the vocabulary
> Token: an instance of that type in running text

GPT-3 training data

Proportion
Dataset # tokens o o
within training
Common Crawl 410 billion 60%
Web Text2 19 billion 22%
Books1 12 billion 8%
Books?2 55 Dbillion 8%

Wikipedia 3 billion 3%



How many words in a sentence?

they lay back on the San Francisco grass and looked at the stars and their

How many?
Tokens: 15

Types: 13



Text normalization

> Normalizing text into standard format

> Every NLP task requires text normalization
= Tokenizing (segmenting) words
= Normalizing word formats
= Segmenting sentences



Word tokenization

> Splitting a text into separate words, or tokens, while preserving the meaning of the
text

> Examples
= | can't believe it's 2023 already!
* Tokens: ["I", "can't", "believe", "it's", "2023", “already!"]
- Let's meet at 7 PM at the café.
* Tokens: ["Let's", "meet", "at", "7", "PM", "at", "the", “café."]



Word tokenization

the Rock 'n' Roll Brooklyn Half Marathon course in Brooklyn, New York

["the", "Rock”, "n"", "Roll", "Brooklyn”, "Half", "Marathon", "course”, "in", "Brooklyn,", "New", "York"]

["the", “Rock 'n’ Roll", "Brooklyn", "Half", "Marathon", "course”, "in", "Brooklyn,", “New York"]



Tokenization in languages without spaces

> Many languages (e.g. Chinese) don’t use spaces to separate words
> How do we decide where the token boundaries should be?

> Chinese as an example
- ERRIERT




Chinese word segmentation

TE FEBRIHSE5E 1

Te FEBRIH/SR5E 1

Te FCBR/ 3R/ 58 T



Chinese word segmentation

WEFHBEN SN R FE

WERH HEN  EERFE

Wk BH BEN B BRFE

Wk BH O BE N B OB 3E




Word tokenization: Out-Of-Vocabulary




Subword tokenization

" Definition: tokens are smaller than words. Subwords can be arbitrary substrings

> Tokenization schemes:
= Token learning
= token segmenter

> Three algorithms
- Byte-pair encoding
= Unigram language modeling
= Wordpiece



Byte-pair encoding

> QOriginally proposed for lossless data compression

aaabdaaabac
abdaaabac  Replace aa with Z
abdZabac  Replace ab with Y
abdZabac  Replace ab with Y
Yd”ZYac



BPE algorithm

function BYTE-PAIR ENCODING(strings C, number of merges k) returns vocab V

V<—all unique characters in C # 1n1tial set of tokens 1s characters
fori=1tok do # merge tokens k times
i1, tgr < Most frequent pair of adjacent tokens in C
tvew 1L + IR # make new token by concatenating
VeV + tyew # update the vocabulary
Replace each occurrence of #7, tg in C with 7,y # and update the corpus

return V




BPE for subword tokenization

low _ low _

lowest lowest

newer_ ,d,e i l,nors, tw n ewer_ ,d,e i, l,n,ors,twerer_
wider _ wider._

new new

low _ low _
lowest lowest
newer ,d,e, i,l,n, o rs,twer new er_
wider _ wider._
new ne w

- ,d,e, i, l,n, 0,158, t w,er,er,,
ne




BPE for subword tokenization

Merge Current vocabulary
ne, w) ,d,e, I, I,n,0,r1,8,t, W, er, er_, ne, new
, 0) ,d,e, I,l,n,0,r18,t,wW,er, er_, ne, new, lo

(

(

(lo, w) ,d,e, I,I,n, 0,18, t, W, er, er_, ne, new, lo, low

(new, er_) ,d,e Ll,n, 0,1, 8,t w,er er_, ne, new, lo, low, newer_
(

low, _) ,d, e, i,I,n,0,r st w, er, er_ , ne, new,lo, low, newer_, low



Applying BPE

> The word: ‘lower’

lower _
lower _
lower._
lower_
low er_



Word normalization

" Atask to put word into a standard format, choosing a single normal form for words
with multiple forms like USA and US.

CUHK-SZ, CUHK(SZ), CUHKSZ, CUHK-Shenzhen

¥

CUHK-Shenzhen




Sentence segmentation

> Cut long text into individual sentences
> The most useful cues:
= Punctuation (e.qg. periods, question marks, and exclamation points)

= The period character “.” is ambiguous between a sentence boundary marker and a
marker of abbreviations like Mr. or Inc.



How similar are two strings?

"> Given a word ‘coleagu€e’, which is the closest?

- Colleague
- College
= Colegio



Minimum Edit distance

" Edit distance gives us a way to quantify string similarity
> Edit operations

= Insertion

= Deletion

= Substitution

> Minimum edit distance

= the minimum number of editing operations (operations like insertion, deletion,
substitution) needed to transform one string into another



Alignment

> An alignment is a correspondence between substring of two sequences
> The minimum edit distance can be represented as an alignment

INTE*NTION

3
*EXECUTION
S

d s s 1

d: deletion
S: substitution
1. Insertion



Minimum edit distance

> Initialization
D(i, 0) =i
D(O0, J) =]
" Recurrence relation
Fori=1...M
Forj=1...N
D(i-1,3) + 1
D(i1,])= min< D(1,37-1) + 1
D(1-1,3-1) + 2: |1f X(1) # Y(3)
0;{if X(1) = Y(J)
> Termination
D(N, M) is distance



Edit distance table

M O
O 1
N 2
E 3




Regular expression

> A sequence of characters that specifies a pattern in text

Someone@cuhk.edu.cn
Someone@stanford.
Someone@mit.
Someone@ntu.edu.tw

Someone@ntu.edu.sg



Regular expression

REGULAR EXPRESSION

Someone@cuhk.edu.cn
: / \@([a=zA=Z.+]+)\.edu
Someone@wstanford.
TEST STRING
Someone@mit.
Someone@cuhk.edu.cn
Someone@ntu. W Someone@stanford.edu
Someone@ntu. S Someone@ntu.edu. tw

someone@gmail.com



To practice: https:/regex101l.com/



Summary

> Every NLP task requires text normalization
= Tokenizing (segmenting) words
= Normalizing word formats
= Segmenting

> Minimum edit distance
> Regular expression



