# CSC3100 - Fundamentals of Speech and Language Processing MDS6002 - Natural Language Processing

#### Lecture 4: Understanding human speech Zhizheng Wu







## Outline

- Information in human speech
- Speech production
- Speech representation
- Timbre
- Prosody

#### Text version of a speech Trask: Sir, you are out of order!

Slade: Outta order? I'll show you outta order! You don't know what outta order is, Mr. Trask! I'd show you but I'm too old; I'm too tired; I'm too fuckin' blind. If I were the man I was five years ago I'd take a FLAME-THROWER to this place! Outta order. Who the hell you think you're talkin' to? I've been around, you know? There was a time I could see. And I have seen boys like these, younger than these, their arms torn out, their legs ripped off. But there isn't nothin' like the sight of an amputated spirit; there is no prosthetic for that. You think you're merely sendin' this splendid foot-soldier back home to Oregon with his tail between his legs, but I say you are executin' his SOUL!! And why?! Because he's not a Baird man! Baird men, ya hurt this boy, you're going to be Baird Bums, the lot of ya. And Harry, Jimmy, Trent, wherever you are out there, FUCK YOU, too!







#### Spoken version



# Ways to say mom

#### Text version



#### Spoken version



C Ic Er



- Content Identity Emotion
- Age, etc





#### Timbre



# Speech production

- Source-filter model
  - Source produces an initial sound
  - Vocal tract filter modifies it
- Source
  - An input of acoustic energy into the speech production system
- Vocal tract filter
  - Articulators: tongue, teeth, lips, velum etc



#### Source

- Voicing source: Vocal folds vibrating
  - A periodic source produced by modulation of the airflow from the lungs by the vocal folds
    - The vocal folds are muscular folds located in the larynx
    - The space between the vocal folds is the glottis
  - If the vocal folds are close together, then air pressure from the lungs can cause them to vibrate periodically, generating voicing.
- Unvoicing source: vocals fold holds close but not vibrating





#### Filter

- The vocal tract acts as a filter, modifying the source waveform
- with the vocal tract filter, plus the radiation characteristics of the lips/nose.



Head

The sound wave at some distance from the speaker is the result of filtering the source



Had



#### Resonance

parameters of the vibrating object.



#### A resonant frequency is a natural frequency of vibration determined by the physical

#### Resonance

The resonances of the vocal tract are called formants









#### Source

https://sail.usc.edu/~lgoldste/General\_Phonetics/Source\_Filter/MATLAB\_demo/source-filter.html







#### Filter

### Source-filter in time domain

Convolution in time domain

# Source



#### Source-filter: Multiplication in frequency domain

Convolution in time domain equivalent to multiplication in frequency domain





#### Source spectrum



https://sail.usc.edu/~lgoldste/General\_Phonetics/Source\_Filter/MATLAB\_demo/source-filter.html



#### Source-filter model





### Independence of source and filter

- Source
  - Fundamental frequency (F0) is driven by the frequency of vocal fold vibrations
  - Harmonics are multiples of F0
- ► Filter
  - Resonances are driven by the shape of the vocal tract (physical property)
    Formants are peaks in the spectral envelope that correspond to resonances
  - Formants are peaks in the spectral e (acoustic property)
- Independence of source and filter
  - You can change F0 without changing the vowel you are saying: harmonics change, formants stay the same

### Speech representation

Time domain



Frequency domain





### Windowing







#### L = Window size

Sample index

# Windowing for analysis



https://wiki.aalto.fi/display/ITSP/Windowing



#### From time domain to spectrum



## Spectral envelop and formants



Frequency (kHz)

### Spectrogram: time-frequency representation



#### **Mel-scale**

steps



#### A scale that maps frequencies such that steps between tones align with our perception of





#### Timbre

- The characteristic quality of a sound, independent of pitch and loudness
- Spectral envelope and its time variation can represent timbre
- The independence of source and filter explains
  - why vowels of the same timbre can be produced on different pitches
  - why vowels of the same pitch can have different timbres

# Prosody: Melody of speech

- Same word can have different prosody
- Prosody includes pitch, duration, stress





### **Perceived Pitch**

- Fundamental frequency (F0)
  - the lowest frequency of a periodic waveform
  - F0 is driven by the frequency of vocal fold vibrations, not vocal tract resonances
- In a speech segment, F0 is semi-continuous





Tonal language: different tonal inflections will convey different meanings



#### Intonation



avery\_sweet.wav





#### Duration





#### Ma

Ma

### Stress/Energy



Ma

#### Ma





# Summary

- Source-filter model
  - Independence of source and filter
    - vowels of the same timbre can have different pitches
    - vowels of the same pitches can have different timbre
- Prosody
  - Pitch: related to fundamental frequency (F0)
  - Duration: how long a word/phoneme pronounced
  - Stress: whether a phonetic unit is emphasized



#### Thanks

**Enjoy your break!** 

#### Backup: convolution vs cross-correction vs autocorrelation

