CSC3100 - Fundamentals of Speech and Language Processing
MDS6002 - Natural Language Processmg
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Lecture 2: Machine Learning in a Nutshell
' Zhlzheng Wu




Outline

> Machine learning: An example
> Learning paradigms
= Supervised learning
= Unsupervised learning
= Reinforcement learning
> Deep learning models
* Loss function and evaluation metrics
> Data is the new ol
> ML in research vs in product
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Videos that Lucas likes

Lu cas I i kes and d iSI i kes l Videos that Lucas dislikes

l Videos that Lucas never sees




Machine learning to learn the behaviors

" Problem definition: Classify whether a video Lucas likes or dislikes




ML model = Data + Algorithms

> ML model = Training data + Algorithms
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l Videos that Lucas likes

M L p red iCt i O n l Videos that Lucas dislikes

l Videos that Lucas never sees

l Prediction that Lucas likes

l Prediction that Lucas dislikes



Recommending videos that Lucas might like




ML Model = a transformation function vs Linear algebra

OEQ ML Model Data

We need data and algorithms to learn the function



Learning paradigms

" Supervised learning
> Unsupervised learning

" Reinforcement learning
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Supervised vs Unsupervised learning

T

. .

PP

UAAL
-’ .

\\\{ \ : / ///l W \\\
.-:\&\\\{‘\‘Wh \‘;§
: THESE IS THIS )
ARE ONE <ok

THING. ..

RIGHT?

/
f 1
1,7




Supervised learning

> Each data point consists of features and a label (or multiple labels)
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Labels Data
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Supervised learning: Label spaces

" Binary classification " Multi-class classification > Regression
= Yes/No - Klabels (K > 2) = Continuous real values
- Positive/Negative (€.g. temperature)
> Applications > Applications - Applications
= Spam filtering = Face recognition - Voice generation
- Medical testing = Sentiment classification ] Imaegenrat
- etc - etc - elc

OO0
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Some typical supervised ML models

Neural Networks

a type of machine learning
model inspired by the
structure and function of the
human brain
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Support Vector Machines

maps training examples to
points in a high-dimensional
space in order to maximize
the distance between the two

categories.

hyperplane =~

support vectors
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Random Forests

a machine learning method for
classification, regression and
other tasks that builds multiple
decision trees during training




Unsupervised learning

> Analyze and cluster unlabeled datasets to discover hidden patterns or data groupings
without the need for human intervention
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Typical unsupervised ML models

> K-means

= The K-Means algorithm finds similarities between objects and groups them into K
different clusters

> Hierarchical Clustering

= Hierarchical clustering builds a tree of nested clusters without having to specity the
number of clusters
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Unsupervised learning: k-means clustering

" k-means clustering: group data samples into k classes
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Reinforcement learning
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Deep learning models
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https:/lilianweng.github.io/posts/2020-04-07-the-transformer-family/



Deep learning generative models

GAN: Adversarial ! x __»Discriminator ” Generator BN
training D(x) G(z)
VAE: maximize X _.m | Z
variational lower bound 95 (2[x)
Flow-based models: X | Flow o Z - Inlnlarse X
Invertible transform of f(x) [ (z)
distributions

Diffusion models: X0
Gradually add Gaussian - - - - - - - ——————--  "U mu “-m———— ]
noise and then reverse

https:/lilianweng.github.io/posts/2021-07-11-diffusion-models/



Loss function

> A method of evaluating how well your algorithm fits/models your dataset
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Loss function

> Cross-entropy loss
= Usually used in classification tasks
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Loss function: Mean-squared loss

> Mean-squared distance between ground truth and prediction
= Usually used in regression tasks
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Evaluation metrics

> Precision and recall
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Evaluation metrics

"> F-score
= The harmonic mean of precision and recall

= F7 gives equal importance to precision and recall
2 precision - recall

= ] - =2 —
recall ~ + precision precision + recall

> Accuracy
TP + TN

I'P+ TN+ FP+ FN

= Binary classification Accuracy =

Correct classifications
All classification

- Multi-class classification Accuracy =

TP = True positive; FP = False positive; TN = True negative; FN = False negative
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Evaluation metrics

> Root Mean Squared Error (RMSE)
= Usually used for regression tasks

RMSE =
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Evaluation metrics

> Pearson correlation coefficient
- a measure of linear correlation between two sets of data
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Data i1s the new oIl

— ML Model
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Labeling data

Fruits
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https:/becominghuman.ai/what-is-the-difference-between-data-annotation-and-labeling-in-ai-ml-bcocabeobgd6




Data labeling

. Privacy concern
Expensive

The process is not private because

The cost can be high, especially when  45t3 needs to be shipped to human
specialized subject matter expertise iS  jnnotators

required
Scalability
Non-adaptive
The time needed to complete the task
Any changes to the guidelines scales linearly with the number of
necessitate re-labeling the entire labels required, making it difficult to

dataset, making the process inflexible handle large datasets
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ROBBIE, STOP MISBEHAVING
OR | WILL SEND YOU BACK
70 DATA CLEANING!

KONUGGETS.COM



Focusing on high-quality data that is consistently labeled
would unlock the value of Al for sectors such as health
care, government technology, and manufacturing

Increase model accuracy with less data

- Andrew Ng
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https:/mitsloan.mit.edu/ideas-made-to-matter/why-its-time-data-centric-artificial-intelligence



Machine learning In research

ML is cool Public data Fancy model Paper News

Everyone is Someone has Read some papers, Results beat CSC3160/
working on ML! already prepared a crazy idea, train baseline, submit a MDS6002 students
Me too! data for me! a model paper, move on! !
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ML in product: Expectation

Deploy model

Collect data Train model

Unlimited
Unlimited GPU computation
resources

Unlimited
budget
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Machine learning in production: Reality

We need to grow
revenue for
product X

Cry!
The boss is stupid!

Why the revenue
has dropped???

L et’s use ML to
Increase user
engagements

Okay! Here is the
budget to label
high quality data

The model is biased,
and not good on
recent data

We! the best! on the
famous leaderboard

We need high
quality data, high
quality labels

Give us more data
please! Recent
product data.

Finally, shipped! We
saved the world!
Preparing email.

Let’s work together
to get the model|
into product

Your model is not as
good as heuristic

Okay! Okay!

We need more
time to optimize the
inference

You need to give
me product data!

Okay! Here are
some product data

The model has hit
the metric goal.
Hooray! Email cc VP

Your model is too
slow and latency is
too high




Machine learning lifecycle

Business
Goal

ML Problem

Framing

Machine Learning
Lifecycle

Deployment

Model
Development

https:/docs.aws.amazon.com/wellarchitected/latest/machine-learning-lens/well-architected-machine-learning-lifecycle.html
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Machine learning lifecycle

Operational
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—
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https:/docs.aws.amazon.com/wellarchitected/latest/machine-learning-lens/well-architected-machine-learning-lifecycle.html



ML in product: Stakeholders

ML team Sales Product Management

Fancy model More clients Fastest inference Low cost, more profit!
Highest accuracy More revenue Reliability, interpretability = laying off ML team
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Useful resources

> Open-source projects
= PyTorch
= TensorFlow

" Platforms
= Colab: https://colab.research.google.com/
= HuggingFace: https://huggingface.co/

> Cool demos
- ChatGPT: https://chat.openai.com/
= Whisper: https://openai.com/blog/whisper/


https://huggingface.co/

Suggestions by ChatGPT

@ Here are a few suggestions for students who want to learn machine learning:

. Start by learning the basics of programming and math. Machine learning requires a
strong foundation in programming and math, especially linear algebra and calculus.

. Choose a programming language and start coding. There are many programming
languages that are popular for machine learning, such as Python, R, and Java. Pick one
and start writing code.

. Take an online course or get a degree in machine learning. There are many online
courses and degree programs that can teach you the concepts and techniques of
machine learning.

. Practice, practice, practice. The best way to learn machine learning is to apply it to
real-world problems. Look for open-source datasets and try to build your own machine
learning models.

. Stay up to date with the latest developments in the field. Machine learning is a rapidly

evolving field, with new techniques and tools being developed all the time. Stay current

by reading papers and blogs, attending conferences, and following experts in the field.
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