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Agenda
‣ Recap
‣ Embedding: dense vs sparse
‣ Static embedding: Word2vec
‣ Dynamic embedding: BERT



Word sense (concept)

‣ He wrote several plays but only one was produced on Broadway
‣ Insiders said the company's stock was in play
‣ The runner was out on a play by the shortstop

Recommended podcast on play (玩⼉）: https://etw.fm/2036



Word representation
‣ Five words vocabulary: man, walk, wowan, swim, ask

- 1-of-N encoding/one-hot encoding

• [1, 0, 0, 0, 0]: man
• [0, 1, 0, 0, 0]: walk
• [0, 0, 1, 0, 0]: woman
• [0, 0, 0, 1, 0]: swim
• [0, 0, 0, 0, 1]: ask



Words as vectors: Document dimensions

similar words have similar vectors 

because they tend to occur in similar documents



Words as vectors: Word dimensions
‣ word-word co-occurrence matrix



TF-IDF



Inner/dot product
‣ The dot product between two vectors is a scalar

The dot product tends to be high 

when the two vectors have large values in the same dimensions



Cosine similarity



Pointwise Mutual Information (PMI)
‣ Do events x and y co-occur more than if they were independent?

‣ PMI between two words
- Do words x and y co-occur more than if they were independent?

Section 6.6: https://web.stanford.edu/~jurafsky/slp3/6.pdf
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Embedding: short, dense vector



Sparse versus dense vectors

TF-IDF (or PMI) vectors are
- long (length |V|= 20,000 to 50,000)

- sparse (most elements are zero)


Alternative: learn vectors which are
- short (length 50-1000)

- dense (most elements are non-zero)



Sparse versus dense vectors
‣ Why dense vectors?

- Short vectors may be easier to use as features in machine learning (fewer weights 
to tune)

- Dense vectors may generalize better than explicit counts
- Dense vectors may do better at capturing synonymy:

• car and automobile are synonyms; but are distinct dimensions
• a word with car as a neighbor and a word with automobile as a neighbor should 

be similar, but aren't
‣ In practice, they work better



Static embedding: one fixed embedding for each word in the 
vocabulary

Dynamic embedding: the vector for each word is different in 
different contexts



Word2vec

Popular embedding method
Very fast to train
Idea: predict rather than count


Word2vec provides various options. We'll do:
 skip-gram with negative sampling (SGNS)


 

 



Skip-gram with negative samples



Word2vec
Instead of counting how often each word w occurs near "apricot"

- Train a classifier on a binary prediction task:

• Is w likely to show up near "apricot"?

We don’t actually care about this task
•But we'll take the learned classifier weights as the word embeddings

Big idea:  self-supervision: 
•A word c that occurs near apricot in the corpus cats as the gold "correct 

answer" for supervised learning
•No need for human labels
• Bengio et al. (2003); Collobert et al. (2011) 



Approach: predict if candidate word c is a "neighbor"

1.Treat the target word t and a neighboring context word c 
as positive examples.

2.Randomly sample other words in the lexicon to get 
negative examples

3.Use logistic regression to train a classifier to distinguish 
those two cases

4.Use the learned weights as the embeddings



Skip-Gram Training Data
Assume a +/- 2 word window, given training sentence:

…lemon, a [tablespoon of  apricot  jam,   a]  pinch…
                        c1                   c2                 c3      c4

	 	                                 [target]



Skip-Gram Classifier
(assuming a +/- 2 word window)

…lemon, a [tablespoon of  apricot  jam,   a]  pinch…
                        c1                   c2 [target]    c3      c4


Goal: train a classifier that is given a candidate (word, context) pair
 (apricot, jam)

  (apricot, aardvark)
…

And assigns each pair a probability:
P(+|w, c) 

	 P(−|w, c) = 1 − P(+|w, c) 



Context matters



Context matters

‣ Pass that book to me

‣ Book a flight for me



Embeddings from Language Model (ELMO)



Embeddings from Language Model (ELMO)



Bidirectional Encoder Representations from Transformers 
(BERT)

BERT =  Encoder of Transformer

Encoder



“We’ll use transformer encoders”, said BERT.

“This is madness”, replied Ernie, “Everybody knows bidirectional conditioning would allow each word to 
indirectly see itself in a multi-layered context.”

“We’ll use masks”, said BERT confidently.



Masked language model



Next sentence prediction



How to use BERT – Case 1

BERT

[CLS] w1 w2 w3

Linear 
Classifier

class
Input: single sentence, 

output: class

sentence

Use cases:

Sentiment analysis 
Document Classification

Trained from 
Scratch 

Fine-tune



How to use BERT – Case 2

BERT

[CLS] w1 w2 w3

Linear 
Cls

class

Input: single sentence, 

output: class of each word

sentence

Use case: Slot filling 

Linear 
Cls

class

Linear 
Cls

class



Linear 
Classifier

w1 w2

How to use BERT – Case 3

BERT

[CLS] [SEP]

Class

Sentence 1 Sentence 2
w3 w4 w5

Input: two sentences, output: class

Use case: Natural Language Inference 

Given a “premise”, determining whether 
a “hypothesis” is T/F/ unknown.



How to use BERT – Case 4 
‣ Extraction-based Question Answering (QA) (E.g. SQuAD)

𝐷 = {𝑑1, 𝑑2, ⋯, 𝑑𝑁}
𝑄 = {𝑞1, 𝑞2, ⋯, 𝑞𝑁}

QA

Model

output: two integers ( , ) 𝑠 𝑒

𝐴 = {𝑞𝑠,  ⋯, 𝑞𝑒}

Document:

Query:

Answer:

𝐷
𝑄

𝑠
𝑒

17

77 79

𝑠 = 17,𝑒 = 17

𝑠 = 77,𝑒 = 79



q1 q2

How to use BERT – Case 4 

BERT

[CLS] [SEP]
question document

d1 d2 d3

dot product

Softmax

0.50.3 0.2

The answer is “d2 d3”.

s = 2, e = 3

Learned 
from scratch



q1 q2

How to use BERT – Case 4 

BERT

[CLS] [SEP]
question document

d1 d2 d3

dot product

Softmax

0.20.1 0.7

The answer is “d2 d3”.

s = 2, e = 3

Learned 
from scratch



BERT for feature extraction



Contextual embedding



Reading materials 
‣ Chapter 6: Vector Semantics and Embeddings

- https://web.stanford.edu/~jurafsky/slp3/6.pdf
‣ Finding the Words to Say: Hidden State Visualizations for Language Models

- http://jalammar.github.io/hidden-states/
‣ The Illustrated Word2vec

- https://jalammar.github.io/illustrated-word2vec/

https://web.stanford.edu/~jurafsky/slp3/6.pdf
http://jalammar.github.io/hidden-states/

