
Zhizheng Wu

Lecture 12
Embedding: Representations of the

meaning of words

1

Agenda
‣ Recap
‣ Embedding: dense vs sparse
‣ Static embedding: Word2vec
‣ Dynamic embedding: BERT

Word sense (concept)

‣ He wrote several plays but only one was produced on Broadway
‣ Insiders said the company's stock was in play
‣ The runner was out on a play by the shortstop

Recommended podcast on play (玩⼉）: https://etw.fm/2036

Word representation
‣ Five words vocabulary: man, walk, wowan, swim, ask

- 1-of-N encoding/one-hot encoding

• [1, 0, 0, 0, 0]: man
• [0, 1, 0, 0, 0]: walk
• [0, 0, 1, 0, 0]: woman
• [0, 0, 0, 1, 0]: swim
• [0, 0, 0, 0, 1]: ask

Words as vectors: Document dimensions

similar words have similar vectors

because they tend to occur in similar documents

Words as vectors: Word dimensions
‣ word-word co-occurrence matrix

TF-IDF

Inner/dot product
‣ The dot product between two vectors is a scalar

The dot product tends to be high

when the two vectors have large values in the same dimensions

Cosine similarity

Pointwise Mutual Information (PMI)
‣ Do events x and y co-occur more than if they were independent?

‣ PMI between two words
- Do words x and y co-occur more than if they were independent?

Section 6.6: https://web.stanford.edu/~jurafsky/slp3/6.pdf

Zhizheng

Zhizheng

Cai Xukun

Michelle Yeoh

Embedding: short, dense vector

Sparse versus dense vectors

TF-IDF (or PMI) vectors are
- long (length |V|= 20,000 to 50,000)

- sparse (most elements are zero)

Alternative: learn vectors which are
- short (length 50-1000)

- dense (most elements are non-zero)

Sparse versus dense vectors
‣ Why dense vectors?

- Short vectors may be easier to use as features in machine learning (fewer weights
to tune)

- Dense vectors may generalize better than explicit counts
- Dense vectors may do better at capturing synonymy:

• car and automobile are synonyms; but are distinct dimensions
• a word with car as a neighbor and a word with automobile as a neighbor should

be similar, but aren't
‣ In practice, they work better

Static embedding: one fixed embedding for each word in the
vocabulary

Dynamic embedding: the vector for each word is different in
different contexts

Word2vec

Popular embedding method
Very fast to train
Idea: predict rather than count

Word2vec provides various options. We'll do:
 skip-gram with negative sampling (SGNS)

 

Skip-gram with negative samples

Word2vec
Instead of counting how often each word w occurs near "apricot"

- Train a classifier on a binary prediction task:

• Is w likely to show up near "apricot"?

We don’t actually care about this task
•But we'll take the learned classifier weights as the word embeddings

Big idea: self-supervision:
•A word c that occurs near apricot in the corpus cats as the gold "correct

answer" for supervised learning
•No need for human labels
• Bengio et al. (2003); Collobert et al. (2011)

Approach: predict if candidate word c is a "neighbor"

1.Treat the target word t and a neighboring context word c
as positive examples.

2.Randomly sample other words in the lexicon to get
negative examples

3.Use logistic regression to train a classifier to distinguish
those two cases

4.Use the learned weights as the embeddings

Skip-Gram Training Data
Assume a +/- 2 word window, given training sentence:

…lemon, a [tablespoon of apricot jam, a] pinch…
 c1 c2 c3 c4

	 	 [target]

Skip-Gram Classifier
(assuming a +/- 2 word window)

…lemon, a [tablespoon of apricot jam, a] pinch…
 c1 c2 [target] c3 c4

Goal: train a classifier that is given a candidate (word, context) pair
 (apricot, jam)

 (apricot, aardvark)
…

And assigns each pair a probability:
P(+|w, c)

	 P(−|w, c) = 1 − P(+|w, c)

Context matters

Context matters

‣ Pass that book to me

‣ Book a flight for me

Embeddings from Language Model (ELMO)

Embeddings from Language Model (ELMO)

Bidirectional Encoder Representations from Transformers
(BERT)

BERT = Encoder of Transformer

Encoder

“We’ll use transformer encoders”, said BERT.

“This is madness”, replied Ernie, “Everybody knows bidirectional conditioning would allow each word to
indirectly see itself in a multi-layered context.”

“We’ll use masks”, said BERT confidently.

Masked language model

Next sentence prediction

How to use BERT – Case 1

BERT

[CLS] w1 w2 w3

Linear
Classifier

class
Input: single sentence,

output: class

sentence

Use cases:

Sentiment analysis
Document Classification

Trained from
Scratch

Fine-tune

How to use BERT – Case 2

BERT

[CLS] w1 w2 w3

Linear
Cls

class

Input: single sentence,

output: class of each word

sentence

Use case: Slot filling

Linear
Cls

class

Linear
Cls

class

Linear
Classifier

w1 w2

How to use BERT – Case 3

BERT

[CLS] [SEP]

Class

Sentence 1 Sentence 2
w3 w4 w5

Input: two sentences, output: class

Use case: Natural Language Inference

Given a “premise”, determining whether
a “hypothesis” is T/F/ unknown.

How to use BERT – Case 4
‣ Extraction-based Question Answering (QA) (E.g. SQuAD)

𝐷 = {𝑑1, 𝑑2, ⋯, 𝑑𝑁}
𝑄 = {𝑞1, 𝑞2, ⋯, 𝑞𝑁}

QA

Model

output: two integers (,) 𝑠 𝑒

𝐴 = {𝑞𝑠, ⋯, 𝑞𝑒}

Document:

Query:

Answer:

𝐷
𝑄

𝑠
𝑒

17

77 79

𝑠 = 17,𝑒 = 17

𝑠 = 77,𝑒 = 79

q1 q2

How to use BERT – Case 4

BERT

[CLS] [SEP]
question document

d1 d2 d3

dot product

Softmax

0.50.3 0.2

The answer is “d2 d3”.

s = 2, e = 3

Learned
from scratch

q1 q2

How to use BERT – Case 4

BERT

[CLS] [SEP]
question document

d1 d2 d3

dot product

Softmax

0.20.1 0.7

The answer is “d2 d3”.

s = 2, e = 3

Learned
from scratch

BERT for feature extraction

Contextual embedding

Reading materials
‣ Chapter 6: Vector Semantics and Embeddings

- https://web.stanford.edu/~jurafsky/slp3/6.pdf
‣ Finding the Words to Say: Hidden State Visualizations for Language Models

- http://jalammar.github.io/hidden-states/
‣ The Illustrated Word2vec

- https://jalammar.github.io/illustrated-word2vec/

https://web.stanford.edu/~jurafsky/slp3/6.pdf
http://jalammar.github.io/hidden-states/

