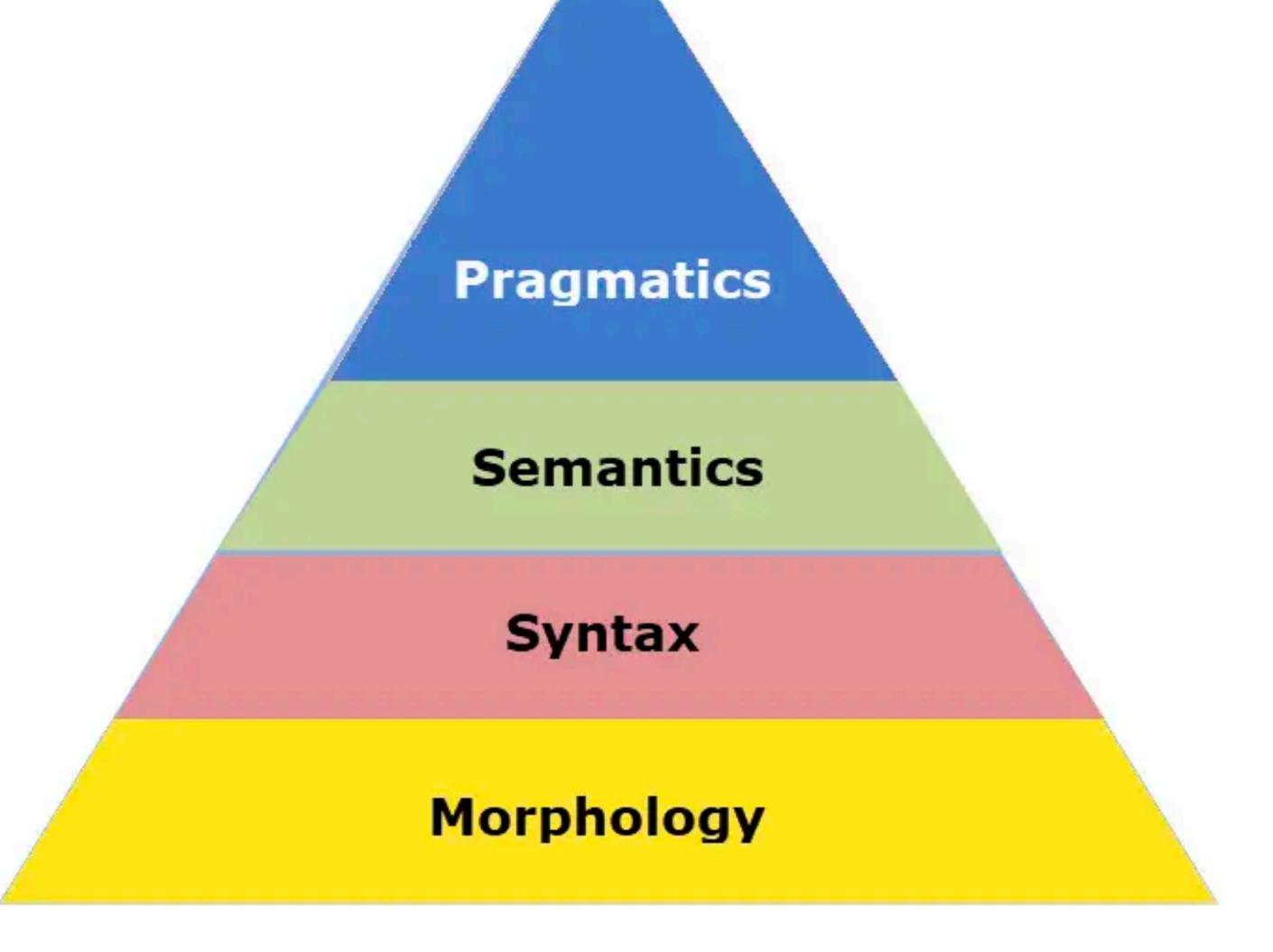
Lecture 11 Embedding: Representations of the meaning of words

Zhizheng Wu

Agenda

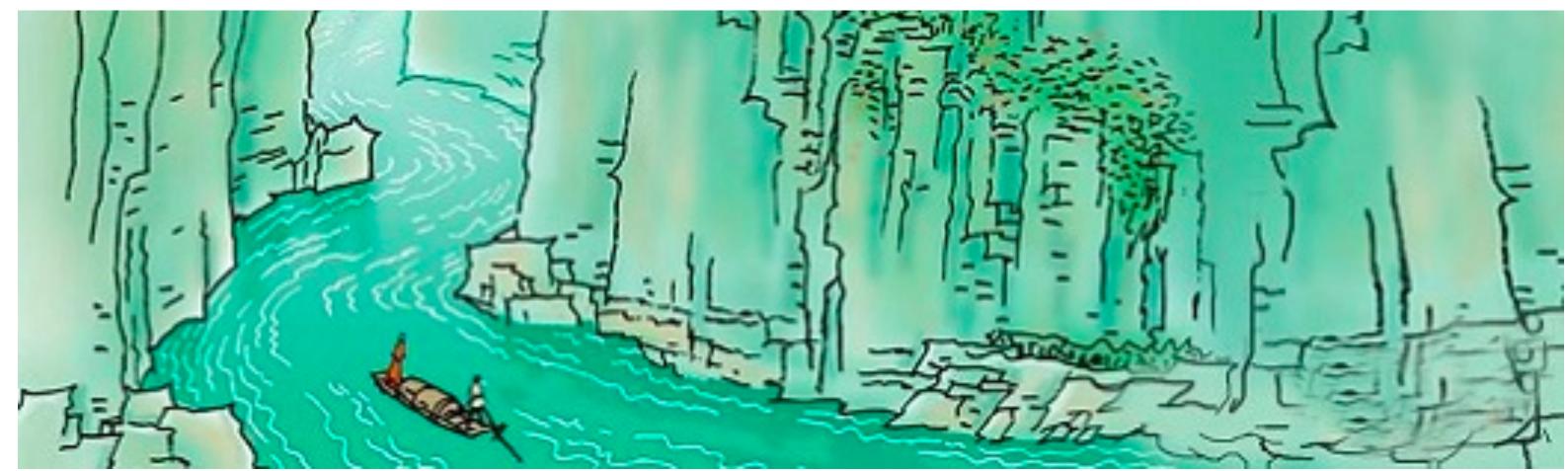
- Recap
- Word sense and their relations
- Word representation and embedding
- Measuring semantic similarity



Natural Language Processing Pyramid



朝辞白帝彩云间,千里江陵一日还。 两岸猿声啼不住,轻舟已过万重山。



言者所以在意,得意而忘言

Words are for meaning; Once you get the meaning, you can forget the words

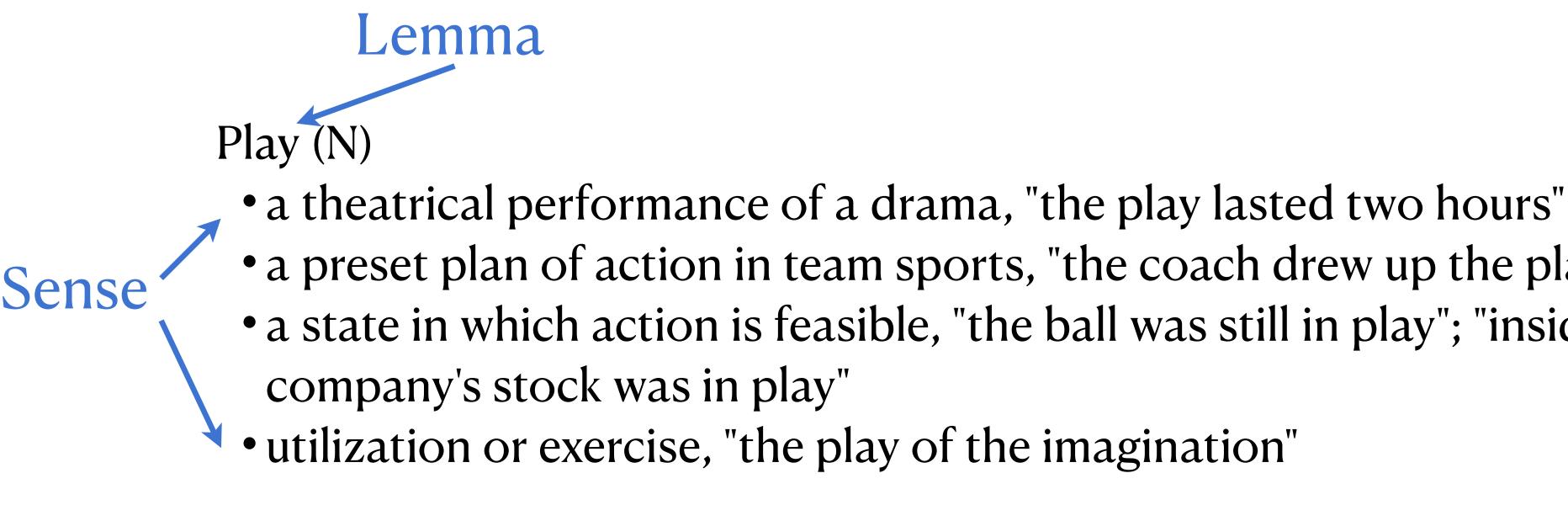
Bank

Bank –

Bank

Word sense (词义)

Word sense vs Lemma



• a preset plan of action in team sports, "the coach drew up the plays for her team" • a state in which action is feasible, "the ball was still in play"; "insiders said the

Word sense (concept)

- He wrote several plays but only one was produced on Broadway
- Insiders said the company's stock was in play
- The runner was out on a play by the shortstop

Recommended podcast on play (玩儿):https://etw.fm/2036

Relations between senses: Synonymy(同义词)

- Synonyms have the same meaning in some or all contexts
 - couch/sofa
 - large/big
 - water/H2O

Relations between senses: Similarity

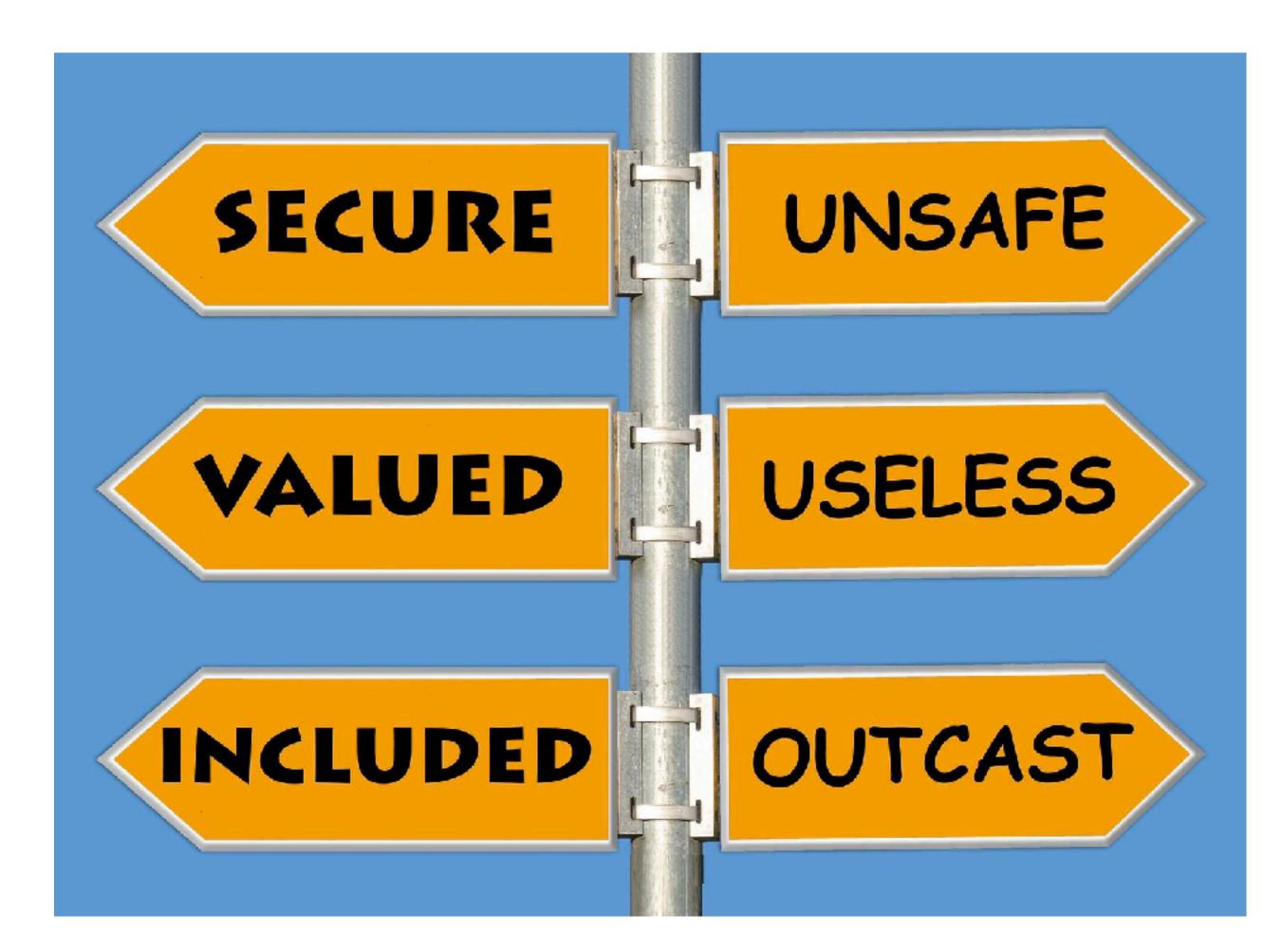
- Words with similar meanings
- Not synonyms, but sharing some element of meaning
 - Car, bicycle
 - Cow, horse

Relations between senses: Relatedness

- Also named as word association
- Words can be related in any way, perhaps via a semantic frame or field
 - Similar: coffee, tea
 - Related (but not similar)
 - coffee, cup

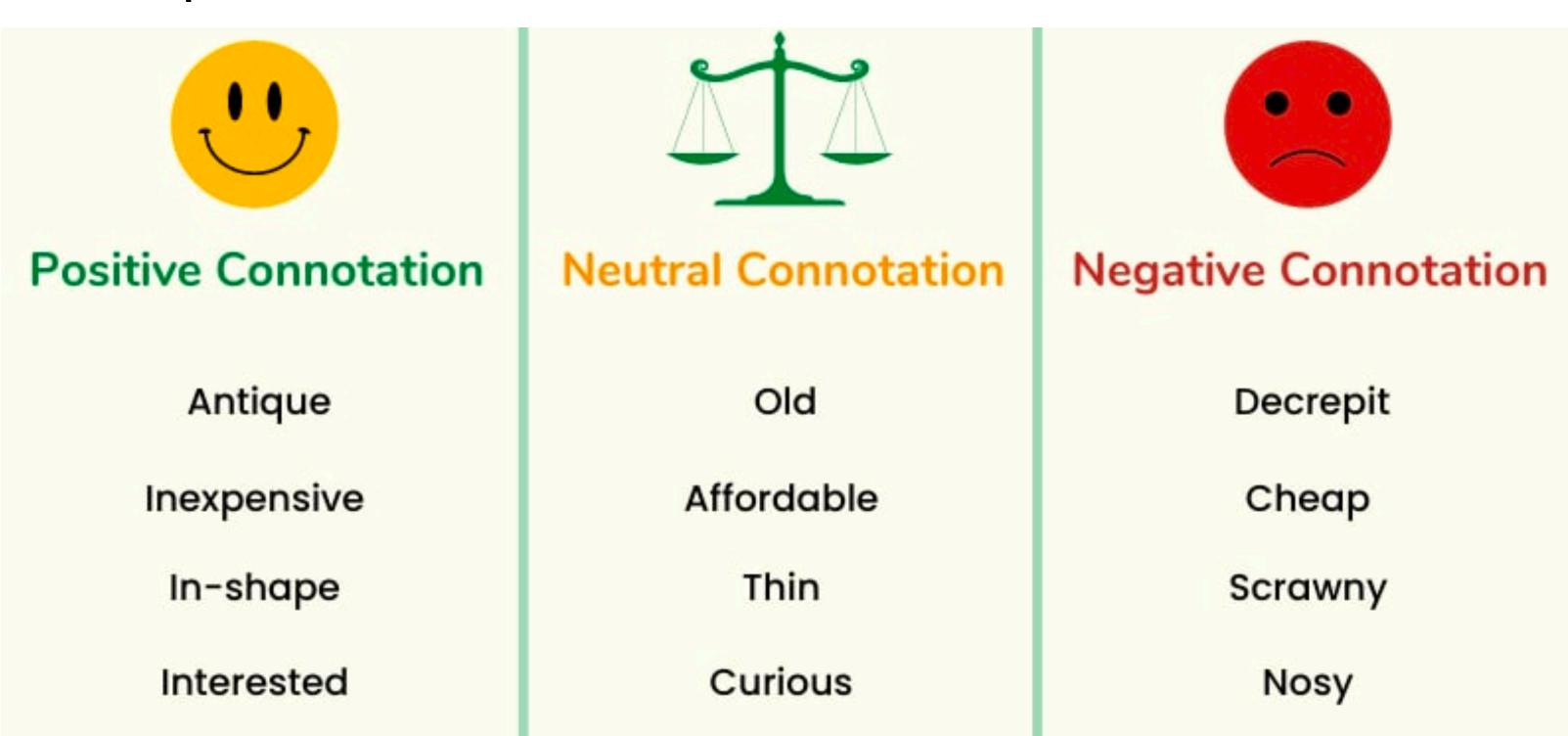
Relations between senses: Antonymy (反义词)

- Senses that are opposites with respect to only one feature of meaning
 - Examples
 - Short/long
 - Hot/cold
 - In/out

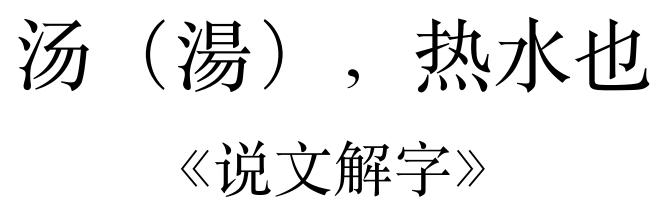


Relations between senses: Connotation (含义)

- Affective meaning of words
 - fake, knockoff, forgery
 - copy, replica, reproduction



Evolution of word sense



汤: Soup

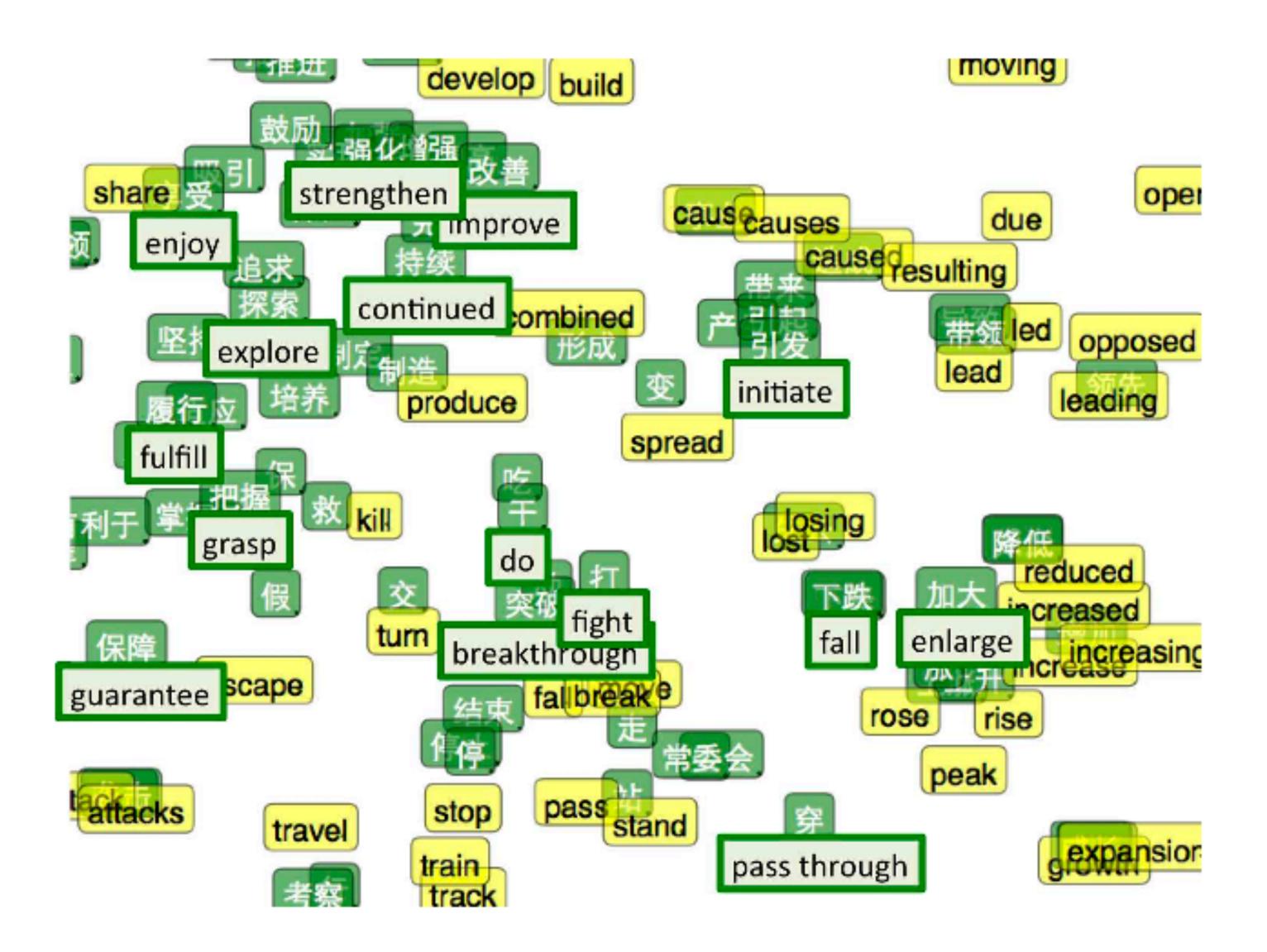
Word representation

- Five words vocabulary: man, walk, wowan, swim, ask
 - 1-of-N encoding/one-hot encoding
 - [1, 0, 0, 0, 0]: man
 - [0, 1, 0, 0, 0]: walk
 - [0, 0, 1, 0, 0]: woman
 - [0, 0, 0, 1, 0]: swim
 - [0, 0, 0, 0, 1]: ask

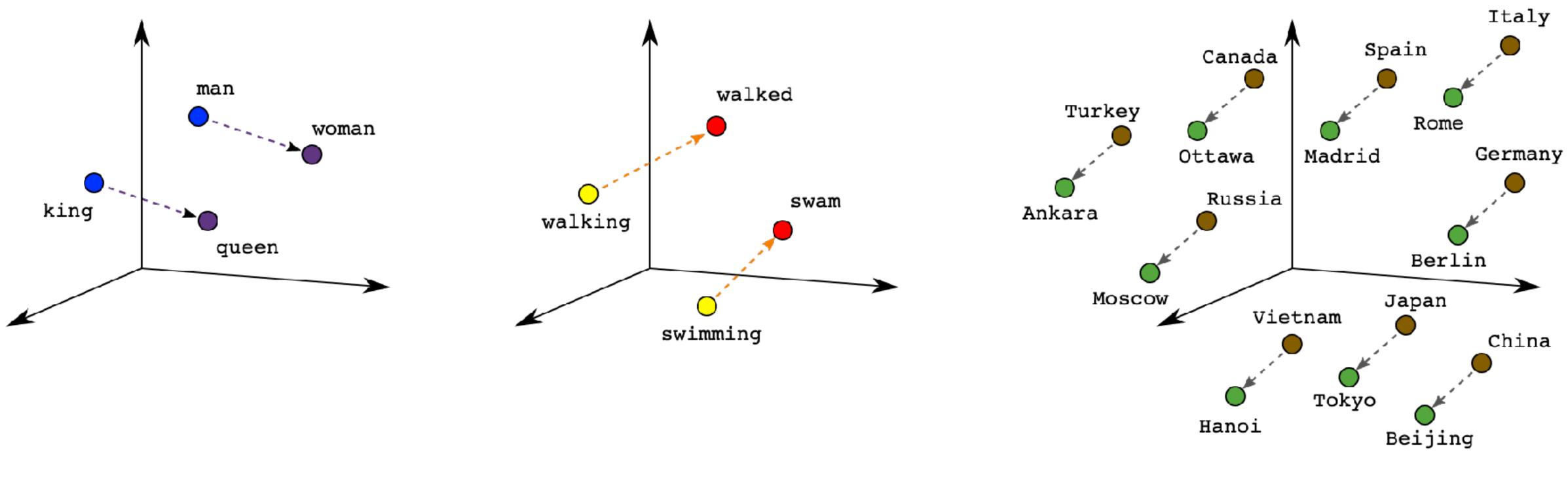
Cross lingual

- Banana
- ▶ 香蕉
- ▶ バナナ
- ▶ 바나나
- plátano
- quả chuối

Cross-lingual word embedding



Semantic similarity



Male-Female

Verb Tense

Country-Capital

Embedding representations

Dense Matrix

1	2	31	2	9	7	34	22	11	5
11	92	4	3	2	2	3	3	2	1
3	9	13	8	21	17	4	2	1	4
8	32	1	2	34	18	7	78	10	7
9	22	3	9	8	71	12	22	17	3
13	21	21	9	2	47	1	81	21	9
21	12	53	12	91	24	81	8	91	2
61	8	33	82	19	87	16	3	1	55
54	4	78	24	18	11	4	2	99	5
13	22	32	42	9	15	9	22	1	21

Sparse Matrix

1		3		9		3			
11		4						2	1
		1				4		1	
8				3	1				
			9			1		17	
13	21		9	2	47	1	81	21	9
				19	8	16			55
54	4				11				
		2					22		21

Co-occurrence matrix

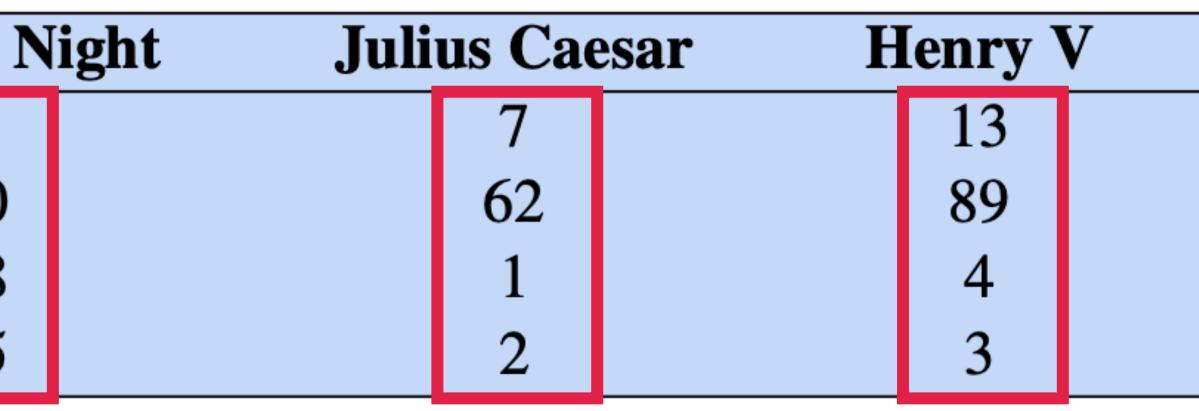
- term-document matrix
 - each row represents a word in the vocabulary
 - each column represents a document from some collection of documents
- Term-term matrix
 - the columns are labeled by words rather than documents

Term-document matrix

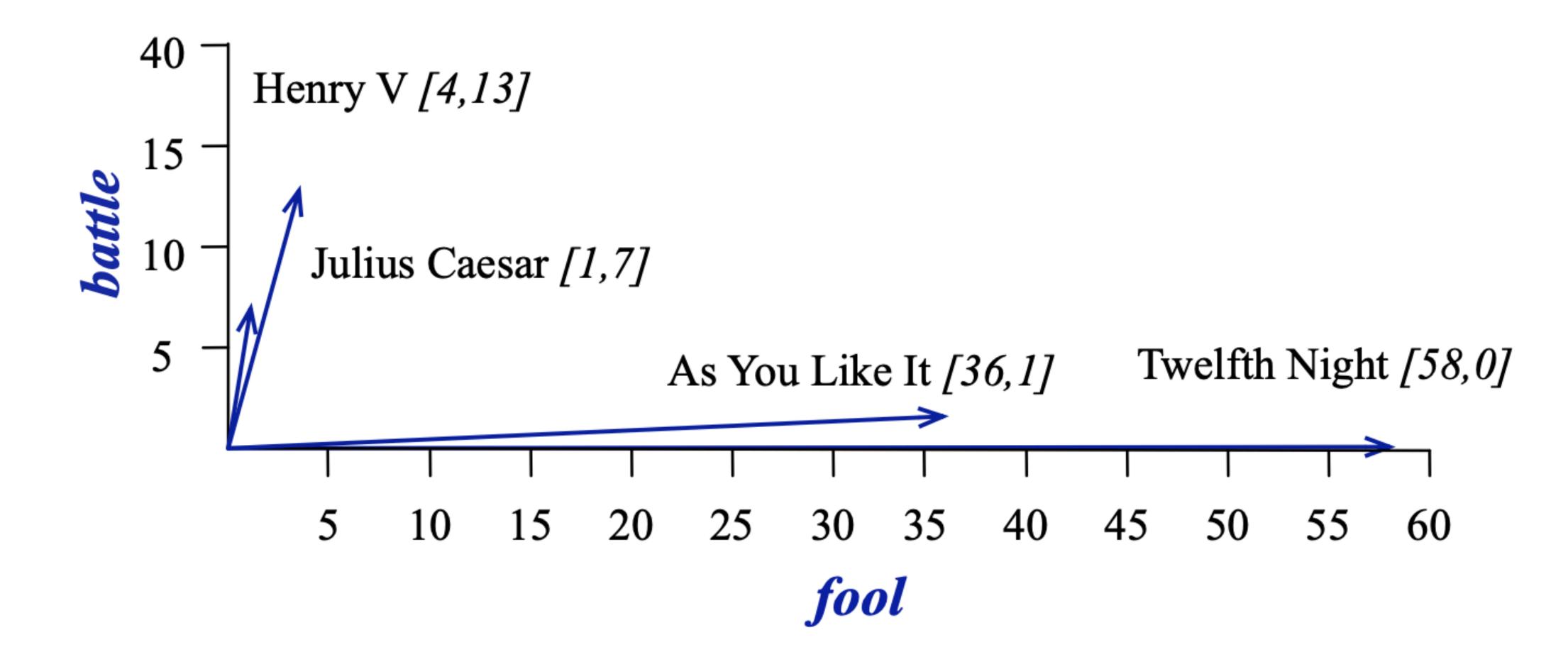
originally defined as a means of finding similar documents

As You Like It			Twe	elfth
battle	1			0
good	114			80
fool	36			58
wit	20			15

similar documents had similar vectors



Spatial visualization



Words as vectors: Document dimensions

	As You Like It	Twelfth Night	Julius Caesar	Henry V
battle	1	0	7	13
good	114	80	62	89
fool	36	58	1	4
wit	20	15	2	3

similar words have similar vectors because they tend to occur in similar documents

Term-term matrix

- the columns are labeled by words rather than documents
- Two words are similar in meaning if their context vectors are similar
 - is traditionally followed by **cherry**
 - often mixed, such as strawberry
 - computer peripherals and personal digital

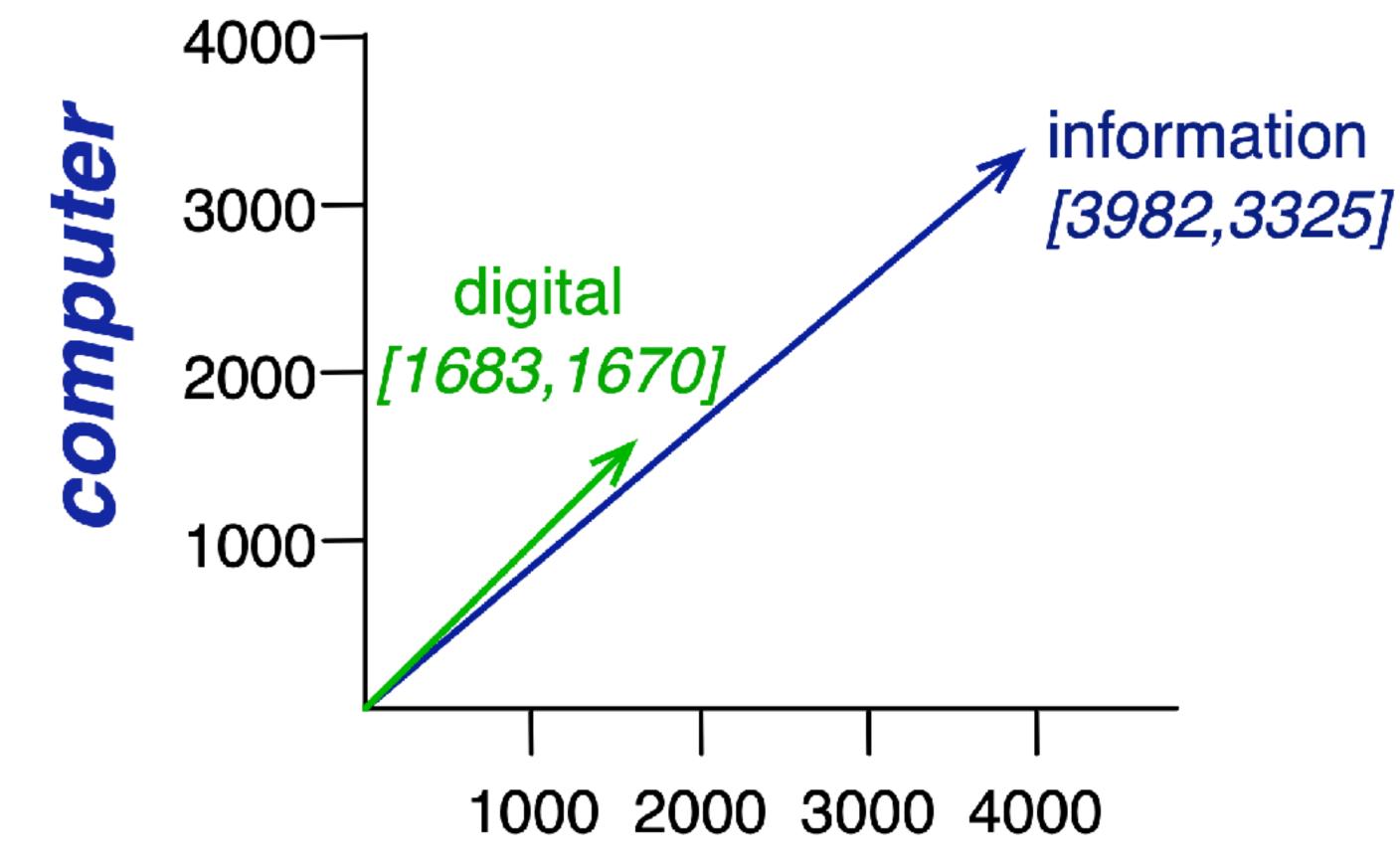
pie, a traditional dessert rhubarb pie. Apple pie assistants. These devices usually a computer. This includes information available on the internet

Words as vectors: Word dimensions

word-word co-occurrence matrix

	aardvark	•••	computer	data	result	pie	sugar	•••
cherry	0	•••	2	8	9	442	25	•••
strawberry	0	•••	0	0	1	60	19	•••
digital	0	•••	1670	1683	85	5	4	•••
information	0	•••	3325	3982	378	5	13	•••

Spatial visualization



data

Is the raw frequency a good representation?

- Motivation
 - Frequency is clearly useful
 - However, overly frequent words like

the and it

are not very informative about the context

We need to balance

Term frequency

$$tf_{t,d} = count(t,d)$$

Instead of using raw count, we squash a bit: $tf_{t,d} = log_{10}(count(t,d)+1)$

TF-IDF

- Document frequency
 - df is a term t is the number of documents it occurs in

Collection Frequency Document Frequency Romeo 113 action 113 31

Inverse document frequency

$$\operatorname{idf}_{t} = \log_{10}\left(\frac{N}{\operatorname{df}_{t}}\right)$$

N is the total number of documents

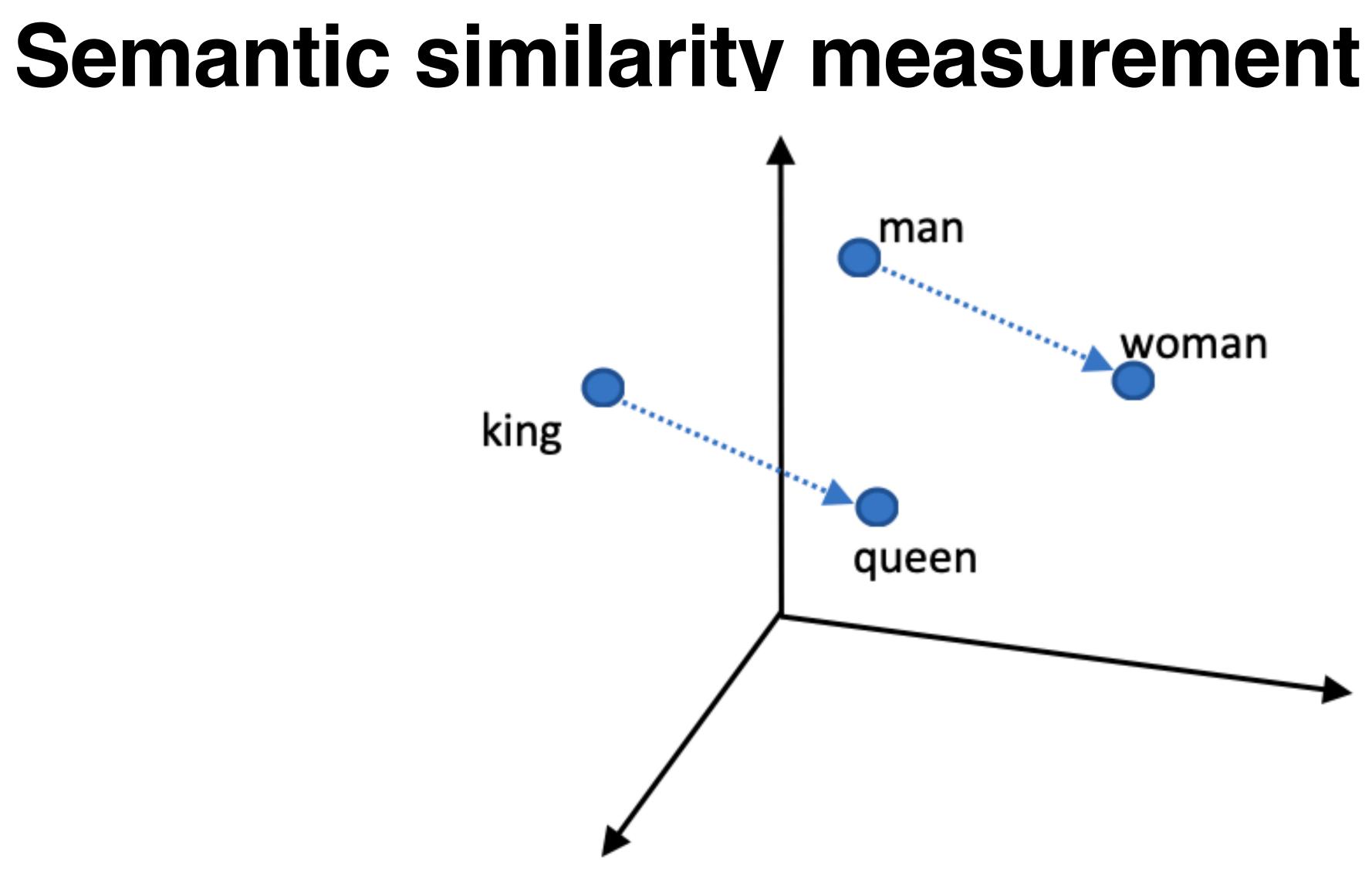
df	idf
1	1.57
2	1.27
4	0.96
12	0.48
21	0.24
34	0.03
36	0.01
37	0
37	0
	1 2 4 12 21 34 36 37

TF-IDF

	As You Like It	Twelfth Night	Julius Caesar	Henry V
battle	1	0	7	13
good	114	80	62	89
fool	36	58	1	4
wit	20	15	2	3

	As You Like It	Twelfth Night	Julius Caesar	Henry V
battle	0.074	0	0.22	0.28
good	0	0	0	0
fool	0.019	0.021	0.0036	0.0083
wit	0.049	0.044	0.018	0.022

 $w_{t,d} = \operatorname{tf}_{t,d} \times \operatorname{idf}_t$



Inner/dot product

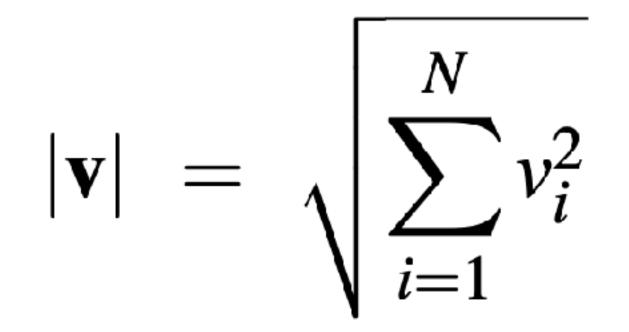
The dot product between two vectors is a scalar

dot product
$$(\mathbf{v}, \mathbf{w}) = \mathbf{v} \cdot \mathbf{w} = \sum_{i=1}^{N} v_i w_i = v_1 w_1 + v_2 w_2 + \dots + v_N w_N$$

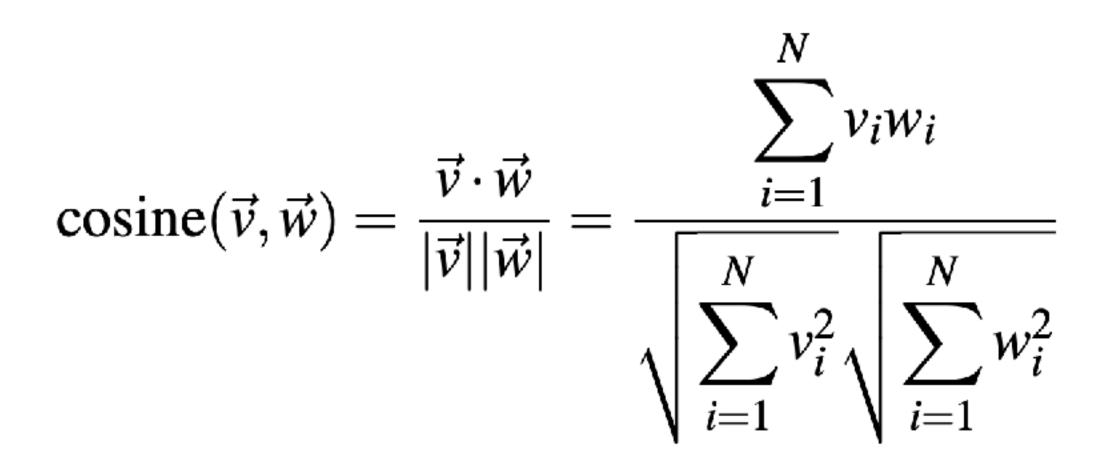
The dot product tends to be **high** when the two vectors have large values in the same dimensions

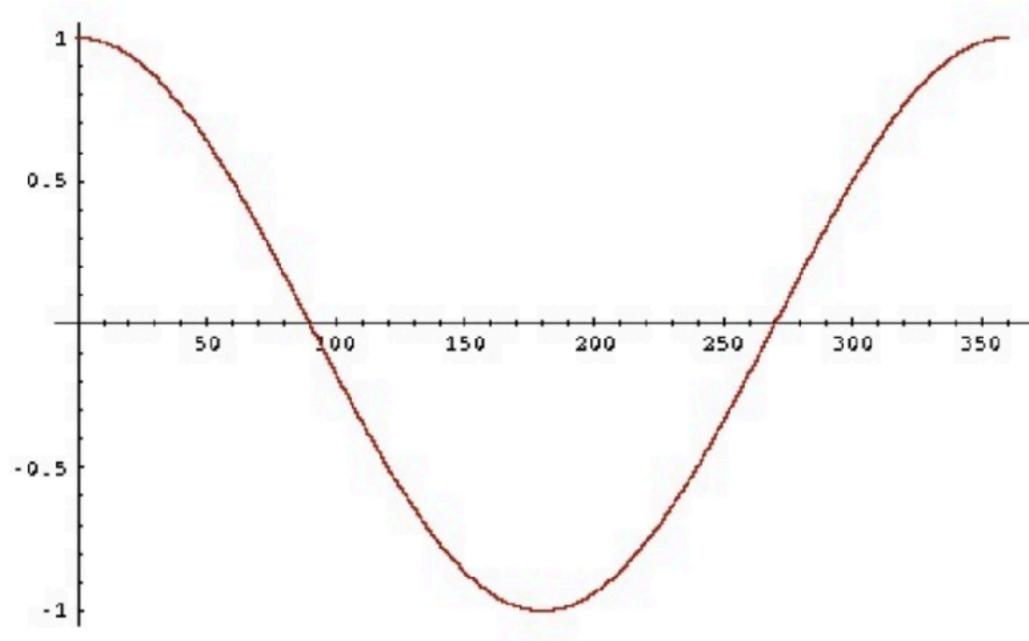
Dot-product: problem

Dot-product favors long vectors (i.e. vectors with larger norm)



Cosine similarity



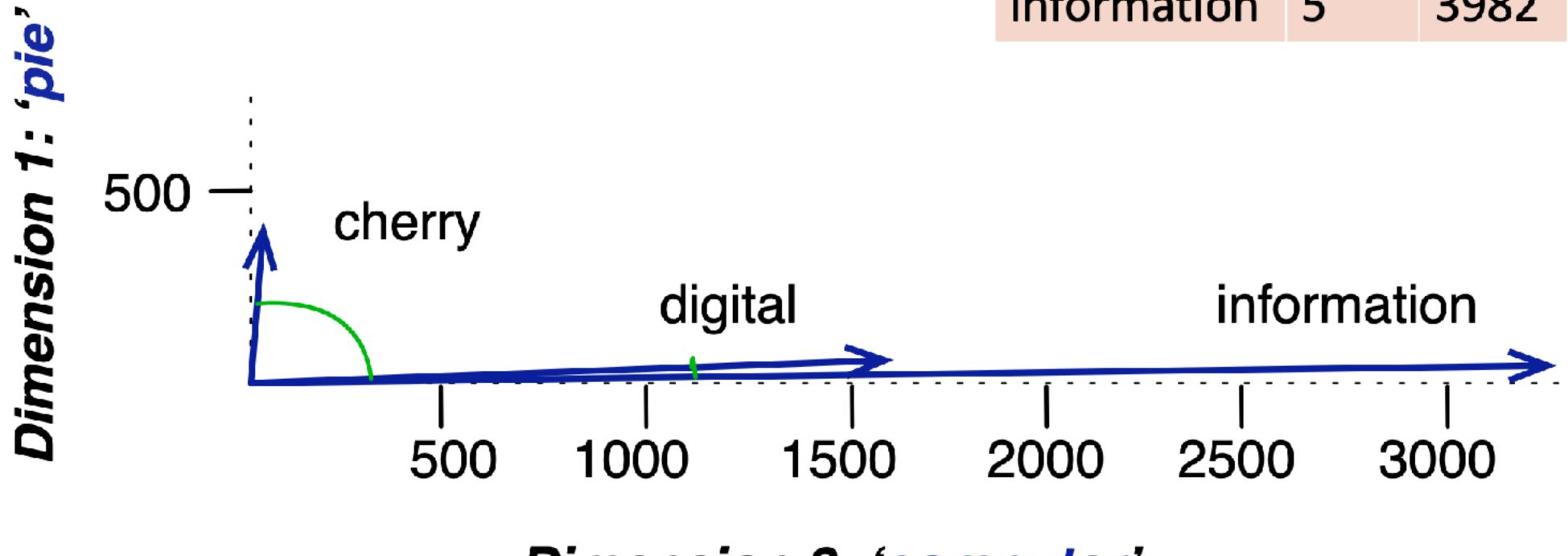


Cosine similarity: Interpretation -1: opposite directions 0.5 +1: same direction O: orthogonal 50 00 150 250 200 300 350 -0.5

- 1



Cosine similarity



Dimension 2: 'computer'

	pie	data	computer
cherry	442	8	2
digital	5	1683	1670
information	5	3982	3325

Summary

- Word sense and their relations
- Word representation
 - We focus on sparse representation in today's lecture
 - Term-document matrix
 - Term-term matrix
 - TF-IDF
- Measure semantic similarity

Reading and tools

- Word embedding colab
 - <u>https://colab.research.google.com/github/pytorch/tutorials/blob/gh-pages/</u> downloads/363afc3b7c522e4e56981679c22f1ad6/ word embeddings tutorial.ipynb
 - word_embeddings.ipynb
- Chapter 6: Vector Semantics and Embeddings
 - https://web.stanford.edu/~jurafsky/slp3/6.pdf

- <u>https://colab.research.google.com/github/tensorflow/text/blob/master/docs/guide/</u>