Lecture 11
 Embedding: Representations of the meaning of words

Zhizheng Wu

Agenda

- Recap
- Word sense and their relations
- Word representation and embedding
- Measuring semantic similarity

Natural Language Processing Pyramid

朝辞白帝彩云间，千里江陵一日还。两岸猿声啼不住，轻舟已过万重山。

言者所以在意，得意而忘言

Words are for meaning；Once you get the meaning，you can forget the words

Bank

Word sense (词义)

- Word sense vs Lemma

Lemma

Play (N)

- a theatrical performance of a drama, "the play lasted two hours"
- a preset plan of action in team sports, "the coach drew up the plays for her team"
- a state in which action is feasible, "the ball was still in play"; "insiders said the company's stock was in play"
- utilization or exercise, "the play of the imagination"

Word sense (concept)

- He wrote several plays but only one was produced on Broadway
- Insiders said the company's stock was in play
- The runner was out on a play by the shortstop

Recommended podcast on play (玩儿) : https://etw.fm/2036

Relations between senses：Synonymy（同义词）

－Synonyms have the same meaning in some or all contexts
－couch／sofa
－large／big
－water／H2O

Relations between senses: Similarity

- Words with similar meanings
- Not synonyms, but sharing some element of meaning
- Car, bicycle
- Cow, horse

Relations between senses: Relatedness

- Also named as word association
- Words can be related in any way, perhaps via a semantic frame or field
- Similar: coffee, tea
- Related (but not similar)
- coffee, cup

Relations between senses：Antonymy（反义词）

－Senses that are opposites with respect to only one feature of meaning
－Examples
－Short／long
－Hot／cold
－In／out

Relations between senses: Connotation (含义)

- Affective meaning of words
- fake, knockoff, forgery
- copy, replica, reproduction

Evolution of word sense

汤：Soup

汤（湯），热水也
《说文解字》

Word representation

- Five words vocabulary: man, walk, wowan, swim, ask
- 1-of-N encoding/one-hot encoding
-
-
-
-
-

Cross lingual

－Banana
－香蕉
－バナナ
－바나나
－plátano
－quả chuối

Cross-lingual word embedding

Semantic similarity

Male-Female

Verb Tense

Country-Capital

Embedding representations

Dense Matrix

1	2	31	2	9	7	34	22	11	5
11	92	4	3	2	2	3	3	2	1
3	9	13	8	21	17	4	2	1	4
8	32	1	2	34	18	7	78	10	7
9	22	3	9	8	71	12	22	17	3
13	21	21	9	2	47	1	81	21	9
21	12	53	12	91	24	81	8	91	2
61	8	33	82	19	87	16	3	1	55
54	4	78	24	18	11	4	2	99	5
13	22	32	42	9	15	9	22	1	21

Sparse Matrix

1	.	3	.	9	.	3	.	.	.
11	.	4	2	1
.	.	1	.	.	.	4	.	1	.
8	.	.	.	3	1
.	.	.	9	.	.	1	.	17	.
13	21	.	9	2	47	1	81	21	9
.
.	.	.	.	19	8	16	.	.	55
54	4	.	.	.	11
.	.	2	22	.	21

Co-occurrence matrix

- term-document matrix
- each row represents a word in the vocabulary
- each column represents a document from some collection of documents
- Term-term matrix
- the columns are labeled by words rather than documents

Term-document matrix

- originally defined as a means of finding similar documents

	As You Like It	Twelfth Night		Julius Caesar		Henry V	
battle	1		0	7	13		
good	114		80		62		
fool	36		58		1		
wit	20		15		2		

similar documents had similar vectors

Spatial visualization

Words as vectors: Document dimensions

	As You Like It	Twelfth Night	Julius Caesar	Henry V
battle	1	0	7	13
good	114	80	62	89
fool	36	58	1	4
wit	20	15	2	3

similar words have similar vectors
because they tend to occur in similar documents

Term-term matrix

- the columns are labeled by words rather than documents
- Two words are similar in meaning if their context vectors are similar
is traditionally followed by cherry pie, a traditional dessert often mixed, such as strawberry rhubarb pie. Apple pie computer peripherals and personal digital assistants. These devices usually a computer. This includes information available on the internet

Words as vectors: Word dimensions

- word-word co-occurrence matrix

	aardvark	\ldots	computer	data	result	pie	sugar	\ldots
cherry	0	\ldots	2	8	9	442	25	\ldots
strawberry	0	\ldots	0	0	1	60	19	\ldots
digital	0	\ldots	1670	1683	85	5	4	\ldots
information	0	\ldots	3325	3982	378	5	13	\ldots

Spatial visualization

Is the raw frequency a good representation?

- Motivation
- Frequency is clearly useful
- However, overly frequent words like
the and it
are not very informative about the context

We need to balance

TF-IDF

- Term frequency

$$
\mathrm{tf}_{t, d}=\operatorname{count}(t, d)
$$

Instead of using raw count, we squash a bit:

$$
\mathrm{tf}_{t, d}=\log _{10}(\operatorname{count}(t, d)+1)
$$

TF-IDF

- Document frequency
- df is a term t is the number of documents it occurs in

	Collection Frequency	Document Frequency
Romeo	113	1
action	113	31

TF-IDF

- Inverse document frequency

$$
\mathrm{idf}_{t}=\log _{10}\left(\frac{N}{\mathrm{df}_{t}}\right)
$$

N is the total number of documents

Word	df	idf
Romeo	1	1.57
salad	2	1.27
Falstaff	4	0.967
forest	12	0.489
battle	21	0.246
wit	34	0.037
fool	36	0.012
good	37	0
sweet	37	0

TF-IDF

$$
w_{t, d}=\mathrm{tf}_{t, d} \times \mathrm{idf}_{t}
$$

	As You Like It	Twelfth Night	Julius Caesar	Henry V
battle	1	0	7	13
good	114	80	62	89
fool	36	58	1	4
wit	20	15	2	3

	As You Like It	Twelfth Night	Julius Caesar	Henry V
battle	0.074	0	0.22	0.28
good	0	0	0	0
fool	0.019	0.021	0.0036	0.0083
wit	0.049	0.044	0.018	0.022

Semantic similaritv measurement

Inner/dot product

- The dot product between two vectors is a scalar
$\operatorname{dot} \operatorname{product}(\mathbf{v}, \mathbf{w})=\mathbf{v} \cdot \mathbf{w}=\sum_{i=1}^{N} v_{i} w_{i}=v_{1} w_{1}+v_{2} w_{2}+\ldots+v_{N} w_{N}$

The dot product tends to be high
when the two vectors have large values in the same dimensions

Dot-product: problem

- Dot-product favors long vectors (i.e. vectors with larger norm)

$$
|\mathbf{v}|=\sqrt{\sum_{i=1}^{N} v_{i}^{2}}
$$

Cosine similarity

$$
\operatorname{cosine}(\vec{v}, \vec{w})=\frac{\vec{v} \cdot \vec{w}}{|\vec{v}||\vec{w}|}=\frac{\sum_{i=1}^{N} v_{i} w_{i}}{\sqrt{\sum_{i=1}^{N} v_{i}^{2} \sqrt{\sum_{i=1}^{N} w_{i}^{2}}}}
$$

Cosine similarity: Interpretation

- -1: opposite directions
- +1: same direction
- 0: orthogonal

Cosine similarity

	pie	data	computer
cherry	442	8	2
digital	5	1683	1670
information	5	3982	3325

Summary

- Word sense and their relations
- Word representation
- We focus on sparse representation in today's lecture
- Term-document matrix
- Term-term matrix
- TF-IDF
- Measure semantic similarity

Reading and tools

- Word embedding colab
- https://colab.research.google.com/github/pytorch/tutorials/blob/gh-pages/ downloads/363afc3b7c522e4e56981679c22f1ad6/ word embeddings tutorial.ipynb
- https://colab.research.google.com/github/tensorflow/text/blob/master/docs/guide/ word embeddings.ipynb
- Chapter 6: Vector Semantics and Embeddings
- https://web.stanford.edu/~jurafsky/slp3/6.pdf

