
Zhizheng Wu

Lecture 10: Language models

1

Agenda
‣ Recap
‣ Neural language model

- Feed-forward
- Recurrent
- Transformer

‣ Large language model

Probabilistic language model
‣ Goal: Compute the probability of a sentence or sequence of words

‣ Probability of an upcoming word

P(W) = P(w1, w2, w3, . . . , wn)

P(wn |w1, w2, w3, . . . , wn−1)

Generalizing bigram to n-gram
‣ From bigram to n-gram

‣ N = 2: bigram
‣ N = 3: trigram
‣ N = 4: 4-gram
‣ N = 5: 5-gram

P(wn |w1:n−1) ≈ P(wn |wn−N+1:n−1)

Example with a mini-corpus

‣ Maximum-likelihood estimation (MLE): bigram probability

<s> : beginning symbol
</s>: ending symbol

Intuition of perplexity
‣ Intuitively, perplexity can be understood as a measure of uncertainty

‣ What’s the level of uncertainty to predict the next word?
- The current president of CUHK Shenzhen is _______ ?
- ChatGPT is built on top of OpenAI's GPT-3 family of large language _____ ?

‣ Uncertainty level
- Unigram: highest
- Bigram: high
- 5-gram: low

Laplace Smoothing
‣ Assuming every (seen or unseen) event occurred once more than it did in the training

data.
‣

PLaplace(wn |wn−1) =
C(wn−1, wn) + 1

C(wn−1) + V

Neural language model
‣ Calculating the probability of the next word in a sequence given some history using a

neural network

‣ Neural network LMs far outperform n-gram language models

Feed-forward neural network

Simple feedforward Neural Language Models
‣ Task:

- predict next word wt
- given prior words wt-1, wt-2, wt-3, …

‣ Problem: Now we’re dealing with sequences of arbitrary length

‣ Solution: Sliding windows of fixed length

Neural language model

Neural LMs vs n-gram LMs
‣ Training data

- We've seen: I have to make sure that the cat gets fed.
- Never seen: dog gets fed

‣ Test data
- I forgot to make sure that the dog gets ___

Neural LM can use the similarity of “cat” and “dog” embeddings to generalize and
predict

Recurrent neural network

Recurrent neural network

RNN unrolled in time

RNN language model

Generating from RNN LM

Encoder-Decoder

Attention

Attention

Self-attention: Intuition

The animal didn't cross the street because it was too tired

Self-attention: Intuition

Self-attention: intuitively a soft lookup table

Self-attention: Query, Key-Value

Self-attention

Self-attention

Transformer block

Transformer as a language model

Large language models

https://stanford-cs324.github.io/winter2022/lectures/introduction/

LLM in production
‣ Google Search

- https://blog.google/products/search/search-language-understanding-bert/
‣ Facebook content moderation

- https://ai.facebook.com/blog/harmful-content-can-evolve-quickly-our-new-ai-system-
adapts-to-tackle-it/

‣ Microsoft’s Azure OpenAI Service
- https://blogs.microsoft.com/ai/new-azure-openai-service/

‣ AI21 Labs’ writing assistance
- https://www.ai21.com/

‣ Many more

LLM issues

‣ Reliability

‣ Social bias

‣ Security

‣ More

The software developer finished the program. He celebrated.

The software developer finished the program. She celebrated.

https://www.wired.com/story/large-language-models-artificial-intelligence/

Recommended reading
‣ The Illustrated Transformer

- https://jalammar.github.io/illustrated-transformer/
- https://nlp.seas.harvard.edu/2018/04/03/attention.html

‣ Large language models
- https://stanford-cs324.github.io/winter2022/

https://jalammar.github.io/illustrated-transformer/
https://nlp.seas.harvard.edu/2018/04/03/attention.html

