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Agenda
‣ Recap
‣ Neural language model

- Feed-forward
- Recurrent
- Transformer

‣ Large language model



Probabilistic language model
‣ Goal: Compute the probability of a sentence or sequence of words

‣ Probability of an upcoming word

P(W) = P(w1, w2, w3, . . . , wn)

P(wn |w1, w2, w3, . . . , wn−1)



Generalizing bigram to n-gram
‣ From bigram to n-gram

‣ N = 2: bigram
‣ N = 3: trigram
‣ N = 4: 4-gram
‣ N = 5: 5-gram

P(wn |w1:n−1) ≈ P(wn |wn−N+1:n−1)



Example with a mini-corpus

‣ Maximum-likelihood estimation (MLE): bigram probability

<s> : beginning symbol
</s>: ending symbol



Intuition of perplexity 
‣ Intuitively, perplexity can be understood as a measure of uncertainty

‣ What’s the level of uncertainty to predict the next word?
- The current president of CUHK Shenzhen is _______ ?
- ChatGPT is built on top of OpenAI's GPT-3 family of large language _____ ?

‣ Uncertainty level
- Unigram: highest
- Bigram: high
- 5-gram: low



Laplace Smoothing
‣ Assuming every (seen or unseen) event occurred once more than it did in the training 

data.
‣

PLaplace(wn |wn−1) =
C(wn−1, wn) + 1

C(wn−1) + V



Neural language model
‣ Calculating the probability of the next word in a sequence given some history using a 

neural network

‣ Neural network LMs far outperform n-gram language models



Feed-forward neural network



Simple feedforward Neural Language Models
‣ Task: 

- predict next word wt 
- given prior words wt-1, wt-2, wt-3, … 

‣ Problem: Now we’re dealing with sequences of arbitrary length

‣ Solution: Sliding windows of fixed length



Neural language model



Neural LMs vs n-gram LMs
‣ Training data

- We've seen: I have to make sure that the cat gets fed.
- Never seen: dog gets fed

‣ Test data
- I forgot to make sure that the dog gets ___

Neural LM can use the similarity of “cat” and “dog” embeddings to generalize and 
predict



Recurrent neural network



Recurrent neural network



RNN unrolled in time



RNN language model



Generating from RNN LM



Encoder-Decoder



Attention



Attention



Self-attention: Intuition

The animal didn't cross the street because it was too tired



Self-attention: Intuition



Self-attention: intuitively a soft lookup table



Self-attention: Query, Key-Value



Self-attention



Self-attention



Transformer block



Transformer as a language model



Large language models 

https://stanford-cs324.github.io/winter2022/lectures/introduction/



LLM in production
‣ Google Search

- https://blog.google/products/search/search-language-understanding-bert/
‣ Facebook content moderation

- https://ai.facebook.com/blog/harmful-content-can-evolve-quickly-our-new-ai-system-
adapts-to-tackle-it/

‣ Microsoft’s Azure OpenAI Service
- https://blogs.microsoft.com/ai/new-azure-openai-service/

‣ AI21 Labs’ writing assistance
- https://www.ai21.com/

‣ Many more



LLM issues

‣ Reliability

‣ Social bias 

‣ Security

‣ More 

The software developer finished the program. He celebrated.

The software developer finished the program. She celebrated.

https://www.wired.com/story/large-language-models-artificial-intelligence/



Recommended reading
‣ The Illustrated Transformer

- https://jalammar.github.io/illustrated-transformer/
- https://nlp.seas.harvard.edu/2018/04/03/attention.html

‣ Large language models
- https://stanford-cs324.github.io/winter2022/

https://jalammar.github.io/illustrated-transformer/
https://nlp.seas.harvard.edu/2018/04/03/attention.html

